• 几百行代码实现一个 JSON 解析器


    前言

    之前在写 gscript时我就在想有没有利用编译原理实现一个更实际工具?毕竟真写一个语言的难度不低,并且也很难真的应用起来。

    一次无意间看到有人提起 JSON 解析器,这类工具充斥着我们的日常开发,运用非常广泛。

    以前我也有思考过它是如何实现的,过程中一旦和编译原理扯上关系就不由自主的劝退了;但经过这段时间的实践我发现实现一个 JSON 解析器似乎也不困难,只是运用到了编译原理前端的部分知识就完全足够了。

    得益于 JSON 的轻量级,同时语法也很简单,所以核心代码大概只用了 800 行便实现了一个语法完善的 JSON 解析器。

    首先还是来看看效果:

    import "github.com/crossoverJie/gjson"
    func TestJson(t *testing.T) {
    	str := `{
       "glossary": {
           "title": "example glossary",
    		"age":1,
    		"long":99.99,
    		"GlossDiv": {
               "title": "S",
    			"GlossList": {
                   "GlossEntry": {
                       "ID": "SGML",
    					"SortAs": "SGML",
    					"GlossTerm": "Standard Generalized Markup Language",
    					"Acronym": "SGML",
    					"Abbrev": "ISO 8879:1986",
    					"GlossDef": {
                           "para": "A meta-markup language, used to create markup languages such as DocBook.",
    						"GlossSeeAlso": ["GML", "XML", true, null]
                       },
    					"GlossSee": "markup"
                   }
               }
           }
       }
    }`
    	decode, err := gjson.Decode(str)
    	assert.Nil(t, err)
    	fmt.Println(decode)
    	v := decode.(map[string]interface{})
    	glossary := v["glossary"].(map[string]interface{})
    	assert.Equal(t, glossary["title"], "example glossary")
    	assert.Equal(t, glossary["age"], 1)
    	assert.Equal(t, glossary["long"], 99.99)
    	glossDiv := glossary["GlossDiv"].(map[string]interface{})
    	assert.Equal(t, glossDiv["title"], "S")
    	glossList := glossDiv["GlossList"].(map[string]interface{})
    	glossEntry := glossList["GlossEntry"].(map[string]interface{})
    	assert.Equal(t, glossEntry["ID"], "SGML")
    	assert.Equal(t, glossEntry["SortAs"], "SGML")
    	assert.Equal(t, glossEntry["GlossTerm"], "Standard Generalized Markup Language")
    	assert.Equal(t, glossEntry["Acronym"], "SGML")
    	assert.Equal(t, glossEntry["Abbrev"], "ISO 8879:1986")
    	glossDef := glossEntry["GlossDef"].(map[string]interface{})
    	assert.Equal(t, glossDef["para"], "A meta-markup language, used to create markup languages such as DocBook.")
    	glossSeeAlso := glossDef["GlossSeeAlso"].(*[]interface{})
    	assert.Equal(t, (*glossSeeAlso)[0], "GML")
    	assert.Equal(t, (*glossSeeAlso)[1], "XML")
    	assert.Equal(t, (*glossSeeAlso)[2], true)
    	assert.Equal(t, (*glossSeeAlso)[3], "")
    	assert.Equal(t, glossEntry["GlossSee"], "markup")
    }
    

    从这个用例中可以看到支持字符串、布尔值、浮点、整形、数组以及各种嵌套关系。

    实现原理

    这里简要说明一下实现原理,本质上就是两步:

    1. 词法解析:根据原始输入的 JSON 字符串解析出 token,也就是类似于 "{" "obj" "age" "1" "[" "]" 这样的标识符,只是要给这类标识符分类。
    2. 根据生成的一组 token 集合,以流的方式进行读取,最终可以生成图中的树状结构,也就是一个 JSONObject

    下面来重点看看这两个步骤具体做了哪些事情。

    词法分析

    BeginObject  {
    String  "name"
    SepColon  :
    String  "cj"
    SepComma  ,
    String  "object"
    SepColon  :
    BeginObject  {
    String  "age"
    SepColon  :
    Number  10
    SepComma  ,
    String  "sex"
    SepColon  :
    String  "girl"
    EndObject  }
    SepComma  ,
    String  "list"
    SepColon  :
    BeginArray  [
    

    其实词法解析就是构建一个有限自动机的过程(DFA),目的是可以生成这样的集合(token),只是我们需要将这些 token进行分类以便后续做语法分析的时候进行处理。

    比如 "{" 这样的左花括号就是一个 BeginObject 代表一个对象声明的开始,而 "}" 则是 EndObject 代表一个对象的结束。

    其中 "name" 这样的就被认为是 String 字符串,以此类推 "[" 代表 BeginArray

    这里我一共定义以下几种 token 类型:

    type Token string
    const (
    	Init        Token = "Init"
    	BeginObject       = "BeginObject"
    	EndObject         = "EndObject"
    	BeginArray        = "BeginArray"
    	EndArray          = "EndArray"
    	Null              = "Null"
    	Null1             = "Null1"
    	Null2             = "Null2"
    	Null3             = "Null3"
    	Number            = "Number"
    	Float             = "Float"
    	BeginString       = "BeginString"
    	EndString         = "EndString"
    	String            = "String"
    	True              = "True"
    	True1             = "True1"
    	True2             = "True2"
    	True3             = "True3"
    	False             = "False"
    	False1            = "False1"
    	False2            = "False2"
    	False3            = "False3"
    	False4            = "False4"
    	// SepColon :
    	SepColon = "SepColon"
    	// SepComma ,
    	SepComma = "SepComma"
    	EndJson  = "EndJson"
    )
    

    其中可以看到 true/false/null 会有多个类型,这点先忽略,后续会解释。

    以这段 JSON 为例:{"age":1},它的状态扭转如下图:

    总的来说就是依次遍历字符串,然后更新一个全局状态,根据该状态的值进行不同的操作。

    部分代码如下:

    感兴趣的朋友可以跑跑单例 debug 一下就很容易理解:

    https://github.com/crossoverJie/gjson/blob/main/token_test.go

    以这段 JSON 为例:

    func TestInitStatus(t *testing.T) {
    	str := `{"name":"cj", "age":10}`
    	tokenize, err := Tokenize(str)
    	assert.Nil(t, err)
    	for _, tokenType := range tokenize {
    		fmt.Printf("%s  %s\n", tokenType.T, tokenType.Value)
    	}
    }
    

    最终生成的 token 集合如下:

    BeginObject  {
    String  "name"
    SepColon  :
    String  "cj"
    SepComma  ,
    String  "age"
    SepColon  :
    Number  10
    EndObject  }
    

    提前检查

    由于 JSON 的语法简单,一些规则甚至在词法规则中就能校验。

    举个例子:
    JSON 中允许 null 值,当我们字符串中存在 nu nul 这类不匹配 null 的值时,就可以提前抛出异常。

    比如当检测到第一个字符串为 n 时,那后续的必须为 u->l->l 不然就抛出异常。

    浮点数同理,当一个数值中存在多个 . 点时,依然需要抛出异常。

    这也是前文提到 true/false/null 这些类型需要有多个中间状态的原因。

    生成 JSONObject 树

    在讨论生成 JSONObject 树之前我们先来看这么一个问题,给定一个括号集合,判断是否合法。

    • [<()>] 这样是合法的。
    • [<()>) 而这样是不合法的。

    如何实现呢?其实也很简单,只需要利用栈就能完成,如下图所示:

    利用栈的特性,依次遍历数据,遇到是左边的符号就入栈,当遇到是右符号时就与栈顶数据匹配,能匹配上就出栈。

    当匹配不上时则说明格式错误,数据遍历完毕后如果栈为空时说明数据合法。

    其实仔细观察 JSON 的语法也是类似的:

    {
        "name": "cj",
        "object": {
            "age": 10,
            "sex": "girl"
        },
        "list": [
            {
                "1": "a"
            },
            {
                "2": "b"
            }
        ]
    }
    

    BeginObject:{EndObject:} 一定是成对出现的,中间如论怎么嵌套也是成对的。
    而对于 "age":10 这样的数据,: 冒号后也得有数据进行匹配,不然就是非法格式。

    所以基于刚才的括号匹配原理,我们也能用类似的方法来解析 token 集合。

    我们也需要创建一个栈,当遇到 BeginObject 时就入栈一个 Map,当遇到一个 String 键时也将该值入栈。

    当遇到 value 时,就将出栈一个 key,同时将数据写入当前栈顶的 map 中。

    当然在遍历 token 的过程中也需要一个全局状态,所以这里也是一个有限状态机


    举个例子:当我们遍历到 Token 类型为 String,值为 "name" 时,预期下一个 token 应当是 :冒号;

    所以我们得将当前的 status 记录为 StatusColon,一旦后续解析到 token 为 SepColon 时,就需要判断当前的 status 是否为 StatusColon ,如果不是则说明语法错误,就可以抛出异常。

    同时值得注意的是这里的 status 其实是一个集合,因为下一个状态可能是多种情况。

    {"e":[1,[2,3],{"d":{"f":"f"}}]}
    比如当我们解析到一个 SepColon 冒号时,后续的状态可能是 valueBeginObject {BeginArray [


    因此这里就得把这三种情况都考虑到,其他的以此类推。

    具体解析过程可以参考源码:
    https://github.com/crossoverJie/gjson/blob/main/parse.go


    虽然是借助一个栈结构就能将 JSON 解析完毕,不知道大家发现一个问题没有:
    这样非常容易遗漏规则,比如刚才提到的一个冒号后面就有三种情况,而一个 BeginArray 后甚至有四种情况(StatusArrayValue, StatusBeginArray, StatusBeginObject, StatusEndArray

    这样的代码读起来也不是很直观,同时容易遗漏语法,只能出现问题再进行修复。

    既然提到了问题那自然也有相应的解决方案,其实就是语法分析中常见的递归下降算法。


    我们只需要根据 JSON 的文法定义,递归的写出算法即可,这样代码阅读起来非常清晰,同时也不会遗漏规则。

    完整的 JSON 语法查看这里:
    https://github.com/antlr/grammars-v4/blob/master/json/JSON.g4

    我也预计将下个版本改为递归下降算法来实现。

    总结

    当目前为止其实只是实现了一个非常基础的 JSON 解析,也没有做性能优化,和官方的 JSON 包对比性能差的不是一星半点。

    cpu: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
    BenchmarkJsonDecode-12            372298             15506 ns/op             512 B/op         12 allocs/op
    BenchmarkDecode-12                141482             43516 ns/op           30589 B/op        962 allocs/op
    PASS
    

    同时还有一些基础功能没有实现,比如将解析后的 JSONObject 可以反射生成自定义的 Struct,以及我最终想实现的支持 JSON 的四则运算:

    gjson.Get("glossary.age+long*(a.b+a.c)")
    

    目前我貌似没有发现有类似的库实现了这个功能,后面真的完成后应该会很有意思,感兴趣的朋友请持续关注。

    源码:
    https://github.com/crossoverJie/gjson

  • 相关阅读:
    GIL 全局解释器
    线程
    队列 Queue 与 生产者消费模型
    进程 与 并发(进程打开方式,互斥锁)
    【JAVA设计模式】单例模式
    【排序】桶排序
    【排序】选择排序
    【排序】插入排序
    【排序】冒泡排序
    JVM 优化之逃逸分析
  • 原文地址:https://www.cnblogs.com/crossoverJie/p/16419004.html
Copyright © 2020-2023  润新知