1.安装依赖
1 sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler 2 sudo apt-get install --no-install-recommends libboost-all-dev 3 sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev 4 sudo apt-get install libatlas-base-dev
5 sudo apt-get install python-dev
sudo apt-get install libopenblas-dev
- 1)sudo apt-get install python-numpy python-scipy python-matplotlib python-sklearn python-skimage
- python-h5py python-protobuf python-leveldb python-networkx python-nose python-pandas python-gflags
- Cython ipython
- 2)sudo apt-get update
- 3)切换到caffe目录下,执行:
- python
- import caffe
sudo pip install protobuf
sudo apt-get install liblapack3
2、下载caffe
3.编译Caffe
(1)切换到Caffe所在目录
cp Makefile.config.example Makefile.config
(2)修改配置文件Makefile.config
- CPU_ONLY := 1
- 配置引用文件(解决新版本下,HDF5的路径问题)
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial BLAS := atlas
opencv问题:
1.$ pkg-config --modversion opencv查看是否安装
2. Makefile文件中,找到LIBRARIES(在PYTHON_LIBRARIES := boost_python python2.7 前一行)
LIBRARIES += glog gflags protobuf leveldb snappy lmdb boost_system hdf5_hl hdf5 m opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs opencv_videoio
3.将Makefile.config中OPENCV_VERSION := 3取消注释;
cuda环境变量
sudo vim ~/.bashrc
export PATH=/usr/local/cuda-9.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64$LD_LIBRARY_PATH
source ~/.bashrc
(3)编译 Caffe
make all -j8 make test -j8 make runtest -j8
4.编译Python接口
Caffe拥有pythonC++shell接口,在Caffe使用python特别方便,在实例中都有接口的说明。
sudo apt-get install python-pip
- 执行安装依赖
cd ~/caffe sudo apt-get install gfortran
cd ./python for req in $(cat requirements.txt); do pip install $req; done
安装完成以后,再次回到caffe根目录我们可以执行:
sudo pip install -r python/requirements.txt
就会看到,安装成功的,都会显示Requirement already satisfied, 没有安装成功的,会继续安装。
- 编译python接口
make pycaffe -j8
--结果显示ALL TESTS PASSED就安装好了!
- 运行python结构
$ python2.7 Python 2.7.12 (default, Jul 1 2016, 15:12:24) [GCC 5.4.0 20160609] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import caffe >>>
如果没有报错,说明caffe安装全部完成(注意:要进入caffe/python再执行python命令,否则import caffe会提示找不到caffe)!
5.在Mnist运行Lenet
- 获取数据源
./data/mnist/get_mnist.sh ./examples/mnist/create_mnist.sh
- 因为是CPU运行,所以修改在examples文件下的Mnist下的lenet_solver.prototxt中的solver_mode:CPU
solver_mode: CPU
- 训练模型
./examples/mnist/train_lenet.sh
添加python目录
vi ~/.bashrc
export PYTHONPATH=/home/username/caffe/python:$PYTHONPATH
source ~/.bashrc