• numpy学习


    1、创建数组

    import numpy as np
    >>> arrayTest=np.array([[1,2,3], [4,5,6]])

    >>> print(arrayTest)

    [[1 2 3]
    [4 5 6]]

    >>> print('dim: ', arrayTest.ndim)
    dim: 2

    >>> print('shape: ', arrayTest.shape)
    shape: (2, 3)
    >>> print('size: ', arrayTest.size)
    size: 6

    >>> a = np.array([4,5,6], dtype = np.int)
    >>> print(a.dtype)
    int32


    >>> a = np.array([4,5,6], dtype = np.float32)
    >>> print(a.dtype)
    float32


    >>> a = np.array([4,5,6], dtype = np.float64)
    >>> print(a.dtype)
    float64

    >>> a = np.array([1,2,3], dtype = np.float)
    >>> print(a.dtype)
    float64

    >>> a = np.zeros( (2,3) )
    >>> print(a)
    [[ 0. 0. 0.]
    [ 0. 0. 0.]]

    >>> a = np.ones((2,3), dtype = np.int16)
    >>> print (a)
    [[1 1 1]
    [1 1 1]]

    >>> a = np.empty((2,3))
    >>> print(a)
    [[ 0. 0. 0.]
    [ 0. 0. 0.]]

    >>> a = np.arange(10,20,2)
    >>> print(a)
    [10 12 14 16 18]

    >>> a = np.arange(12).reshape( (3,4) )
    >>> print(a)
    [[ 0 1 2 3]
    [ 4 5 6 7]
    [ 8 9 10 11]]

    >>> a = np.linspace(1,10,6)
    >>> print(a)
    [ 1. 2.8 4.6 6.4 8.2 10. ]

    >>> a = np.array([6,7,8,9,10])

    >>> b = np.arange(5)
    >>> c = a-b
    >>> print(a,b,c)
    [ 6 7 8 9 10]    [0 1 2 3 4]    [6 6 6 6 6]

    >>> c=a+b
    >>> print(a,b,c)
    [ 6 7 8 9 10]    [0 1 2 3 4]    [ 6 8 10 12 14]

    >>> c=a**3
    >>> print(a,c)
    [ 6 7 8 9 10] [ 216 343 512 729 1000]
    >>> c=a*b
    >>> print(a,b,c)
    [ 6 7 8 9 10] [0 1 2 3 4] [ 0 7 16 27 40]
    >>> c=10*np.sin(a)
    >>> print(a,c)
    [ 6 7 8 9 10] [-2.79415498 6.56986599 9.89358247 4.12118485 -5.44021111]
    >>> print(b<3)
    [ True True True False False]

    >>> a=np.array([[1,2],[4,5]])
    >>> b = np.arange(4).reshape(2,2)
    >>> c = a * b
    >>> c_dot = np.dot(a, b)

    或者(>>> c_dot = a.dot(b))
    >>> print(a, b, c, c_dot)
    [[1 2]
    [4 5]]

    [[0 1]
    [2 3]]

    [[ 0 2]
    [ 8 15]]

    [[ 4 7]
    [10 19]]

    >>> a = np.random.random((2,4))
    >>> print(a)
    [[ 0.78855417 0.12055971 0.07196497 0.36303178]
    [ 0.30091437 0.43272544 0.88599988 0.38490545]]


    >>> print(np.sum(a))
    3.34865577967
    >>> print(np.sum(a,axis=1))
    [ 1.34411063 2.00454515]
    >>> print(np.sum(a,axis=0))
    [ 1.08946854 0.55328515 0.95796485 0.74793724]
    >>>
    >>> print(np.min(a))
    0.0719649740461
    >>> print(np.min(a,axis=0))
    [ 0.30091437 0.12055971 0.07196497 0.36303178]
    >>> print(np.min(a,axis=1))
    [ 0.07196497 0.30091437]
    >>>
    >>> print(np.max(a))
    0.885999877641
    >>> print(np.max(a,axis=0))
    [ 0.78855417 0.43272544 0.88599988 0.38490545]
    >>> print(np.max(a,axis=1))
    [ 0.78855417 0.88599988]

    >>> import numpy as np
    >>> a = np.arange(2,14).reshape(3,4)
    >>> print(a)
    [[ 2 3 4 5]
    [ 6 7 8 9]
    [10 11 12 13]]

    >>> print(np.argmin(a))
    0
    >>> print(np.argmax(a))
    11
    >>> print(np.mean(a))
    7.5
    >>> print(a.mean())
    7.5

    >>> print(a.average())   error


    >>> print(np.average(a))
    7.5

    >>> print(np.median(a))
    7.5

    >>> print(np.cumsum(a))
    [ 2 5 9 14 20 27 35 44 54 65 77 90]
    >>> print(np.diff(a))
    [[1 1 1]
    [1 1 1]
    [1 1 1]]
    >>> print(np.nonzero(a))
    (array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int64), array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int64))

    >>> a = np.array([[1,3,2], [4,5,6], [9,8,7]])

    >>> print (a)
    [[1 3 2]
    [4 5 6]
    [9 8 7]]

    >>> print(np.transpose(a))
    [[1 4 9]
    [3 5 8]
    [2 6 7]]

    >>> print(a.T)
    [[1 4 9]
    [3 5 8]
    [2 6 7]]

    >>> print((a.T).dot(a))
    [[98 95 89]
    [95 98 92]
    [89 92 89]]

    >>> print(np.mean(a,axis=0))
    [ 4.66666667 5.33333333 5. ]
    >>> print(np.mean(a,axis=1))
    [ 2. 5. 8.]

    >>> a = np.array([0, 1,2,3,4,5])
    >>> print(a)
    [0 1 2 3 4 5]
    >>> print(a[3])
    3
    >>> a = np.array([0, 1,2,3,4,5]).reshape(2,3)
    >>> print(a)
    [[0 1 2]
    [3 4 5]]
    >>> print(a[1])

    [3 4 5]

    >>> print(a[1][1])
    4

    >>> print(a[1,1])
    4

    >>> print(a[1,:])
    [3 4 5]
    >>> print(a[:,1])
    [1 4]
    >>> print(a[1,1:2])
    [4]

    >>> for row in a:
    print(row)


    [0 1 2]
    [3 4 5]

    >>> for col in a.T:
    print(col)


    [0 3]
    [1 4]
    [2 5]

    >>> print(a.flatten())
    [0 1 2 3 4 5]

    >>> for item in a.flat:
    print(item)


    0
    1
    2
    3
    4
    5

    >>> a = np.array([1,1,1])
    >>> b = np.array([2,2,2])

    >>> print(np.vstack((a,b)))
    [[1 1 1]
    [2 2 2]]

    >>> print(a.shape, b.shape)
    (3,) (3,)
    >>> c = np.vstack((a,b))
    >>> d = np.hstack((a,b))
    >>>
    >>> print(c)
    [[1 1 1]
    [2 2 2]]
    >>> print(d)
    [1 1 1 2 2 2]
    >>> print(a.shape, d.shape)
    (3,) (6,)

    >>> print(a[:,np.newaxis])
    [[1]
    [1]
    [1]]

    >>> a = np.array([1,1,1])[:,np.newaxis]
    >>> b = np.array([2,2,2])[:,np.newaxis]
    >>>
    >>> c = np.concatenate((a,b,b,a),axis=1)
    >>> print(a,b,c)
    [[1]
    [1]
    [1]]

    [[2]
    [2]
    [2]]

    [[1 2 2 1]
    [1 2 2 1]
    [1 2 2 1]]
    >>> d = np.concatenate((a,b,b,a),axis=0)
    >>> print(d)
    [[1]
    [1]
    [1]
    [2]
    [2]
    [2]
    [2]
    [2]
    [2]
    [1]
    [1]
    [1]]

  • 相关阅读:
    第一阶段冲刺05
    生成器
    三元表达式 ,列表推导式 , 字典生成式
    装饰器
    闭包函数
    函数的定义和参数
    列表内置方法
    字符串的内置方法
    py_11_ 0731
    py_11_ 0730
  • 原文地址:https://www.cnblogs.com/crazybird123/p/6947818.html
Copyright © 2020-2023  润新知