• poj 1094 Sorting It All Out (拓扑排序)


    http://poj.org/problem?id=1094

    Sorting It All Out
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 24505   Accepted: 8487

    Description

    An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

    Input

    Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

    Output

    For each problem instance, output consists of one line. This line should be one of the following three: 
    Sorted sequence determined after xxx relations: yyy...y.  Sorted sequence cannot be determined.  Inconsistency found after xxx relations. 
    where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence. 

    Sample Input

    4 6
    A<B
    A<C
    B<C
    C<D
    B<D
    A<B
    3 2
    A<B
    B<A
    26 1
    A<Z
    0 0
    

    Sample Output

    Sorted sequence determined after 4 relations: ABCD.
    Inconsistency found after 2 relations.
    Sorted sequence cannot be determined.

    Source

     
    【题解】:
      拓扑排序到底就行,注意:
        当遇到两个入度为0的情况,需要判断是否出现环
      唉,不说了,代码写得真挫,乱七八糟,不过能AC
       
    【code】:
      1 /**
      2 Judge Status:Accepted    Memory:704K
      3 Time:0MS     Language:G++
      4 Code Lenght:2296B   Author:cj
      5 */
      6 
      7 #include<iostream>
      8 #include<stdio.h>
      9 #include<string.h>
     10 #include<math.h>
     11 #include<algorithm>
     12 
     13 #define N 30
     14 #define M N*N
     15 using namespace std;
     16 
     17 int map[N][N],mark[N],in[N],tin[N];
     18 char anstr[N];
     19 int n,flag;
     20 
     21 void init()
     22 {
     23     memset(map,0,sizeof(map));
     24     memset(mark,0,sizeof(mark));
     25     memset(in,0,sizeof(in));
     26     memset(tin,0,sizeof(tin));
     27 }
     28 
     29 int topCheck(int id)  //拓扑排序
     30 {
     31     int i,cnt=0,pos=-1;
     32     for(i=0;i<26;i++)
     33     {
     34         if(mark[i]&&!in[i])
     35         {
     36             cnt++;
     37             pos=i;
     38         }
     39     }
     40     if(cnt>1)  //当有多个入度为0的点
     41     {
     42         flag = 1;  //标记出现多个入度为0的点的情况
     43         in[pos] = -1;
     44         anstr[id] = pos+'A';
     45         for(i=0;i<26;i++)
     46         {
     47             if(map[pos][i])     in[i]--;
     48         }
     49         return topCheck(id+1);
     50     }
     51     if(cnt==0)
     52     {
     53         for(i=0;i<26;i++)
     54         {
     55             if(mark[i]&&in[i]>0)  
     56             {
     57                 return 1;   //入度都大于0,出现了环
     58             }
     59         }
     60         if(id!=n||flag)   return 0;  //当排序到入度为0时,并且一直没有出现过多个入度为0的情况,则排序可以完成
     61         anstr[id]='';
     62         return 2;
     63     }
     64     in[pos] = -1;
     65     anstr[id] = pos+'A';
     66     for(i=0;i<26;i++)
     67     {
     68         if(map[pos][i])     in[i]--;
     69     }
     70     return topCheck(id+1);  //进入下一层拓扑排序
     71     return 0;
     72 }
     73 
     74 int main()
     75 {
     76     int m;
     77     while(~scanf("%d%d",&n,&m))
     78     {
     79         if(!n&&!m)  break;
     80         char xx[5];
     81         int i;
     82         init();
     83         int temp=0,pos=0;
     84         for(i=1;i<=m;i++)
     85         {
     86             scanf("%s",xx);
     87             int x = xx[0]-'A';
     88             int y = xx[2]-'A';
     89             mark[x] = mark[y] = 1;
     90             tin[y]++;
     91             map[x][y] = 1;
     92             memcpy(in,tin,sizeof(int)*26);
     93             if(temp!=0)  continue;
     94             flag = 0;
     95             temp = topCheck(0);
     96             pos = i;
     97         }
     98         if(temp==2)
     99         {
    100             anstr[pos+i]='';
    101             printf("Sorted sequence determined after %d relations: %s.
    ",pos,anstr);
    102             continue;
    103         }
    104         if(temp==1)
    105         {
    106             printf("Inconsistency found after %d relations.
    ",pos);
    107             continue;
    108         }
    109         puts("Sorted sequence cannot be determined.");
    110     }
    111     return 0;
    112 }
  • 相关阅读:
    Quartus 16.1 signaltap问题
    黑金AX301开发板视频图像处理:探索
    YOLO算法学习
    Ubuntu 16.04运行altera opencl sdk(AOCL)
    Ubuntu下quartus发现不到usb blaster的问题
    Ubuntu 16.04安装altera opencl sdk(AOCL)
    ZYNQ术语及缩写
    BinaryNet: Training Deep Neural Networks with Weights and ActivationsConstrained to +1 or −1
    卷积神经网络优化方法
    FINN: A Framework for Fast, Scalable Binarized Neural Network Inference_2016_CSCV
  • 原文地址:https://www.cnblogs.com/crazyapple/p/3268880.html
Copyright © 2020-2023  润新知