• poj 3522 Slim Span (最小生成树kruskal)


    http://poj.org/problem?id=3522

    Slim Span
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 5666   Accepted: 2965

    Description

    Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

    The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e  E has its weight w(e).

    A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

    Figure 5: A graph G and the weights of the edges

    For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

    Figure 6: Examples of the spanning trees of G

    There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

    Your job is to write a program that computes the smallest slimness.

    Input

    The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

    n m  
    a1 b1 w1
       
    am bm wm

    Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m  n(n − 1)/2. ak andbk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight ofek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

    Output

    For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

    Sample Input

    4 5
    1 2 3
    1 3 5
    1 4 6
    2 4 6
    3 4 7
    4 6
    1 2 10
    1 3 100
    1 4 90
    2 3 20
    2 4 80
    3 4 40
    2 1
    1 2 1
    3 0
    3 1
    1 2 1
    3 3
    1 2 2
    2 3 5
    1 3 6
    5 10
    1 2 110
    1 3 120
    1 4 130
    1 5 120
    2 3 110
    2 4 120
    2 5 130
    3 4 120
    3 5 110
    4 5 120
    5 10
    1 2 9384
    1 3 887
    1 4 2778
    1 5 6916
    2 3 7794
    2 4 8336
    2 5 5387
    3 4 493
    3 5 6650
    4 5 1422
    5 8
    1 2 1
    2 3 100
    3 4 100
    4 5 100
    1 5 50
    2 5 50
    3 5 50
    4 1 150
    0 0

    Sample Output

    1
    20
    0
    -1
    -1
    1
    0
    1686
    50

    Source

     
    【题解】:
     这道题简单的来说就是求一棵生成树使最大的边和最小的边差值最小。

      换个角度想就是用n-1条(n个点)数值相差不多的边,组成一棵生成树。 在生成树的prim和kruskal两个算法中很容易就会觉得kruskal的贪心思想会更加适合这道题。 kruskal算法一开始会对边进行排序,然后枚举最小的边。

    【code】:
      1 /**
      2 Judge Status:Accepted    Memory:756K
      3 Time:157MS     Language:G++
      4 Code Lenght:1613B  Author:cj
      5 */
      6 
      7 #include<iostream>
      8 #include<stdio.h>
      9 #include<string.h>
     10 #include<algorithm>
     11 
     12 #define N 110
     13 #define M 6000
     14 #define INF 1000000000
     15 
     16 using namespace std;
     17 
     18 struct Nod
     19 {
     20     int a,b,c;
     21 }node[M];
     22 
     23 int n,m,parent[N];
     24 
     25 bool cmp(Nod a,Nod b)
     26 {
     27     return a.c<b.c;
     28 }
     29 
     30 int findp(int a)
     31 {
     32     while(a!=parent[a])
     33     {
     34         a=parent[a];
     35     }
     36     return a;
     37 }
     38 
     39 int merge(Nod nd)
     40 {
     41     int x = findp(nd.a);
     42     int y = findp(nd.b);
     43     if(x!=y)
     44     {
     45         parent[x]=y;
     46         return nd.c;
     47     }
     48     return -1;
     49 }
     50 
     51 int kruskal(int id)
     52 {
     53     int i,cnt = 0;
     54     if(m-id+1<n-1)  return INF;  //少于n-1边的话 注定够不成生成树
     55     for(i=1;i<=N;i++)   parent[i]=i;
     56     int flag = 0,mins
     57     for(i=id;i<m;i++)
     58     {
     59         int temp = merge(node[i]);
     60         if(temp!=-1)
     61         {
     62             if(!flag)   mins = temp;  //记录最小边
     63             flag = 1;
     64             cnt++;
     65         }
     66         if(cnt>=n-1)    return temp-mins;  //只要找到n-1条边即可,返回最大边与最小边的差
     67     }
     68     if(cnt<n-1) return INF;  //构不成生成树
     69 }
     70 
     71 int main()
     72 {
     73 
     74     while(~scanf("%d%d",&n,&m))
     75     {
     76         if(n==0&&m==0)  break;
     77         if(m==0){puts("-1");continue;}
     78         int i;
     79         for(i=0;i<m;i++)
     80         {
     81             scanf("%d%d%d",&node[i].a,&node[i].b,&node[i].c);
     82         }
     83         sort(node,node+m,cmp);
     84         int ans = INF;
     85         int temp = kruskal(0);
     86         if(temp==INF)
     87         {
     88             puts("-1");
     89             continue;
     90         }
     91         if(ans>temp)    ans = temp;
     92         for(i=1;i<m;i++)
     93         {
     94             temp = kruskal(i);  //枚举最小边
     95             if(ans>temp)    ans = temp;
     96         }
     97         printf("%d
    ",ans);
     98     }
     99     return 0;
    100 }
  • 相关阅读:
    Sqlite—修改语句(Update)
    Python—图形界面开发
    Django—模型
    Sqlite—删除语句(Delete)
    Shell—详解$( )、$(( ))、``与${ }的区别
    Shell—详解$0、$1、$2、$#、$*、$@、$?、$$变量
    排名靠前的博客
    系统架构--逻辑层
    互联网系统的通用架构笔记
    各类开源协议总结
  • 原文地址:https://www.cnblogs.com/crazyapple/p/3254671.html
Copyright © 2020-2023  润新知