Co-prime
Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=4135
推荐: 容斥原理
Mean:
给你一个区间[l,r]和一个数n,求[l,r]中有多少个数与n互素。
analyse:
经典的容斥原理题。
如果题目是说求1~n中有多少个数与n互质,我们一定反应应该是欧拉函数。
但是如果n特别大或者说是求某个给定区间与n互素的个数,这时用欧拉函数就行不通。
容斥做法:首先我们可以在O(sqrt(n))内求出n的所有质因数p1,p2,p3....pk。
对于每个质因数pi,1~r中不与它互素的个数就是r/pi。
然后就是如何容斥了?
首先我们来分析,n<=1e9,那么n的质因数的个数最多不超过9个,那么我们就可以对n的所有质因数进行组合来计算。
例如:30的质因数有3个(2,3,5),我们可以用二进制来表示所有的情况:
001: 5
010: 3
011: 3 5
100: 2
101: 2 5
110: 2 3
111: 2 3 5
假设有k个质因数,那么只需用2^k-1个数的二进制来表示即可。
剩下的就是容斥了,设cnt为1的个数(选中的质因数的个数),当cnt为奇数,sum加上此次的;cnt为偶数,sum减去此次的。
具体看代码。
Time complexity: O(N)
Source code:
/*
* this code is made by crazyacking
* Verdict: Accepted
* Submission Date: 2015-08-10-19.49
* Time: 0MS
* Memory: 137KB
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#define LL long long
#define ULL unsigned long long
using namespace std;
LL solve(LL r,LL n)
{
vector<LL> ve;
LL up=(LL)sqrt(n);
for(LL i=2;i<=up;++i)
{
if(n%i==0)
{
ve.push_back(i);
while(n%i==0)
n/=i;
}
}
if(n>1) ve.push_back(n);
LL sum=0,si=ve.size();
up=(1<<si)-1;
for(LL i=1;i<=up;++i)
{
LL tmp=i,bits=0,mul=1,cnt=0;
while(tmp)
{
if(tmp&1)
{
mul*=ve[bits];
++cnt;
}
++bits;
tmp=tmp>>1;
}
LL cur=r/mul;
if(cnt&1) sum+=cur;
else sum-=cur;
}
return sum;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(0);
LL t,cas=1;
cin>>t;
while(t--)
{
LL l,r,n;
cin>>l>>r>>n;
if(l>r) swap(l,r);
printf("Case #%lld: %lld ",cas++,r-l+1-(solve(r,n)-solve(l-1,n)));
}
return 0;
}
/*
*/
* this code is made by crazyacking
* Verdict: Accepted
* Submission Date: 2015-08-10-19.49
* Time: 0MS
* Memory: 137KB
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#define LL long long
#define ULL unsigned long long
using namespace std;
LL solve(LL r,LL n)
{
vector<LL> ve;
LL up=(LL)sqrt(n);
for(LL i=2;i<=up;++i)
{
if(n%i==0)
{
ve.push_back(i);
while(n%i==0)
n/=i;
}
}
if(n>1) ve.push_back(n);
LL sum=0,si=ve.size();
up=(1<<si)-1;
for(LL i=1;i<=up;++i)
{
LL tmp=i,bits=0,mul=1,cnt=0;
while(tmp)
{
if(tmp&1)
{
mul*=ve[bits];
++cnt;
}
++bits;
tmp=tmp>>1;
}
LL cur=r/mul;
if(cnt&1) sum+=cur;
else sum-=cur;
}
return sum;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(0);
LL t,cas=1;
cin>>t;
while(t--)
{
LL l,r,n;
cin>>l>>r>>n;
if(l>r) swap(l,r);
printf("Case #%lld: %lld ",cas++,r-l+1-(solve(r,n)-solve(l-1,n)));
}
return 0;
}
/*
*/