• POJ 3436 ACM Computer Factory


    ACM Computer Factory

    Time Limit: 1000ms
    Memory Limit: 65536KB
    This problem will be judged on PKU. Original ID: 3436
    64-bit integer IO format: %lld      Java class name: Main
    Special Judge

    As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

    Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

    Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

    Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

    Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

    The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

    After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

    As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

    Input

    Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part j, Di,k — output specification for part k.

    Constraints

    1 ≤ P ≤ 10, 1 ≤ N ≤ 50, 1 ≤ Qi ≤ 10000

    Output

    Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

    If several solutions exist, output any of them.

    Sample Input

    Sample input 1
    3 4
    15  0 0 0  0 1 0
    10  0 0 0  0 1 1
    30  0 1 2  1 1 1
    3   0 2 1  1 1 1
    Sample input 2
    3 5
    5   0 0 0  0 1 0
    100 0 1 0  1 0 1
    3   0 1 0  1 1 0
    1   1 0 1  1 1 0
    300 1 1 2  1 1 1
    Sample input 3
    2 2
    100  0 0  1 0
    200  0 1  1 1

    Sample Output

    Sample output 1
    25 2
    1 3 15
    2 3 10
    Sample output 2
    4 5
    1 3 3
    3 5 3
    1 2 1
    2 4 1
    4 5 1
    Sample output 3
    0 0

    Source

     
    解题:网络流,每个机器拆成 i与 i + N,容量为performance
     
    然后就是检查各个机器之间的看看出的半成品是否可以流入另一台机器,没有1的与源连接,全1的与汇连接,跑一边网络流即可
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 using namespace std;
     5 const int INF = ~0U>>2;
     6 const int maxn = 200;
     7 struct arc {
     8     int to,flow,next;
     9     arc(int x = 0,int y = 0,int z = -1) {
    10         to = x;
    11         flow = y;
    12         next = z;
    13     }
    14 } e[maxn*maxn];
    15 int head[maxn],d[maxn],gap[maxn],tot,S,T,n;
    16 void add(int u,int v,int flow) {
    17     e[tot] = arc(v,flow,head[u]);
    18     head[u] = tot++;
    19     e[tot] = arc(u,0,head[v]);
    20     head[v] = tot++;
    21 }
    22 int dfs(int u,int low) {
    23     if(u == T) return low;
    24     int tmp = 0,minH = n - 1;
    25     for(int i = head[u]; ~i; i = e[i].next) {
    26         if(e[i].flow) {
    27             if(d[u] == d[e[i].to] + 1) {
    28                 int a = dfs(e[i].to,min(low,e[i].flow));
    29                 e[i].flow -= a;
    30                 e[i^1].flow += a;
    31                 tmp += a;
    32                 low -= a;
    33                 if(!low) break;
    34                 if(d[S] >= n) return tmp;
    35             }
    36             if(e[i].flow) minH = min(minH,d[e[i].to]);
    37         }
    38     }
    39     if(!tmp) {
    40         if(--gap[d[u]] == 0) d[S] = n;
    41         ++gap[d[u] = minH + 1];
    42     }
    43     return tmp;
    44 }
    45 int in[maxn][maxn],ou[maxn][maxn],P,N;
    46 bool check(int a,int b) {
    47     for(int i = 0; i < P; ++i) {
    48         if(in[b][i] < 2 && ou[a][i] != in[b][i]) return false;
    49     }
    50     return true;
    51 }
    52 int main() {
    53     while(~scanf("%d%d",&P,&N)) {
    54         memset(head,-1,sizeof head);
    55         memset(d,0,sizeof d);
    56         memset(gap,0,sizeof gap);
    57         for(int i = tot = 0,tmp; i < N; ++i) {
    58             scanf("%d",&tmp);
    59             add(i,i + N,tmp);
    60             for(int j = 0; j < P; ++j)
    61                 scanf("%d",in[i] + j);
    62             for(int j = 0; j < P; ++j)
    63                 scanf("%d",ou[i] + j);
    64         }
    65         S = N + N;
    66         T = S + 1;
    67         n = T + 1;
    68         for(int i = 0; i < N; ++i) {
    69             bool none = true,allone = true;
    70             for(int j = 0; j < P; ++j) {
    71                 if(in[i][j] == 1) none = false;
    72                 if(ou[i][j] != 1) allone = false;
    73             }
    74             if(none) add(S,i,INF);
    75             if(allone) add(i + N,T,INF);
    76             for(int j = 0; j < N; ++j) {
    77                 if(i == j) continue;
    78                 if(check(i,j)) add(i + N,j,INF);
    79             }
    80         }
    81         int ret = 0,cnt = 0;
    82         gap[S] = n;
    83         while(d[S] < n) ret += dfs(S,INF);
    84 
    85         for(int i = 0; i < N; ++i) {
    86             for(int j = head[i + N]; ~j; j = e[j].next) {
    87                 if(e[j].to < N && e[j].to != i && e[j^1].flow) ++cnt;
    88             }
    89         }
    90         printf("%d %d
    ",ret,cnt);
    91         for(int i = 0; i < N; ++i) {
    92             for(int j = head[i + N]; ~j; j = e[j].next) {
    93                 if(e[j].to < N && e[j].to != i && e[j^1].flow)
    94                 printf("%d %d %d
    ",i + 1,e[j].to + 1,e[j^1].flow);
    95             }
    96         }
    97     }
    98     return 0;
    99 }
    View Code
  • 相关阅读:
    Linux反编译
    函数调用 堆栈
    机器学习经典书籍
    linux kernel系列四:嵌入式系统中的文件系统以及MTD
    Linux Kernel系列三:Kernel编译和链接中的linker script语法详解
    单页面响应式模板:血色圆月
    Disqus评论框改造工程-Jekyll等静态博客实现Disqus代理访问
    25个Web前端开发工程师必看的国外大牛和酷站
    我们是谁? 程序员!
    GitHub万星项目:黑客成长技术清单
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4966492.html
Copyright © 2020-2023  润新知