• HDU 3073 Saving Beans


    Saving Beans

    Time Limit: 3000ms
    Memory Limit: 32768KB
    This problem will be judged on HDU. Original ID: 3037
    64-bit integer IO format: %I64d      Java class name: Main
     
    Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

    Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
     

    Input

    The first line contains one integer T, means the number of cases.

    Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
     

    Output

    You should output the answer modulo p.
     

    Sample Input

    2
    1 2 5
    2 1 5

    Sample Output

    3
    3


    解题:Lucas 求组合数取模

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 LL F[100010] = {1};
     5 void init(LL mod) {
     6     for(int i = 1; i <= mod; ++i)
     7         F[i] = F[i-1]*i%mod;
     8 }
     9 LL gcd(LL a,LL b,LL &x,LL &y) {
    10     if(!b) {
    11         x = 1;
    12         y = 0;
    13         return a;
    14     }
    15     LL ret = gcd(b,a%b,y,x);
    16     y -= x*(a/b);
    17     return ret;
    18 }
    19 LL Inv(LL b,LL mod) {
    20     LL x,y,d = gcd(b,mod,x,y);
    21     return d == 1?(x%mod + mod)%mod:-1;
    22 }
    23 LL inv(LL b,LL mod) {
    24     if(b == 1) return 1;
    25     return inv(mod%b,mod)*(mod-mod/b)%mod;
    26 }
    27 LL Lucas(LL n,LL m,LL mod) {
    28     LL ret = 1;
    29     while(n && m) {
    30         LL a = n%mod;
    31         LL b = m%mod;
    32         if(a < b) return 0;
    33         ret = ret*F[a]%mod*Inv(F[b]*F[a-b]%mod,mod)%mod;
    34         n /= mod;
    35         m /= mod;
    36     }
    37     return ret;
    38 }
    39 int main() {
    40     int kase,n,m,mod;
    41     scanf("%d",&kase);
    42     while(kase--) {
    43         scanf("%d%d%d",&n,&m,&mod);
    44         init(mod);
    45         printf("%I64d
    ",Lucas(n+m,n,mod));
    46     }
    47     return 0;
    48 }
    View Code
  • 相关阅读:
    10个大数据领域的杰出公司
    面向对象下面几步
    $response->decoded_content; 和$response->content; 乱码问题
    netty新建连接并发数很小的case
    与eclipse集成的管理zookeeper工具
    zookeeper集群搭建
    用 Flask 来写个轻博客 (22) — 实现博客文章的添加和编辑页面
    perl 对象
    业务人员自助BI分析不够用,还要自助数据准备?
    业务人员自助BI分析不够用,还要自助数据准备?
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4729400.html
Copyright © 2020-2023  润新知