• HDU 1828 Picture


    Picture

    Time Limit: 2000ms
    Memory Limit: 32768KB
    This problem will be judged on HDU. Original ID: 1828
    64-bit integer IO format: %I64d      Java class name: Main
     
    A number of rectangular posters, photographs and other pictures of the same shape are pasted on a wall. Their sides are all vertical or horizontal. Each rectangle can be partially or totally covered by the others. The length of the boundary of the union of all rectangles is called the perimeter. 

    Write a program to calculate the perimeter. An example with 7 rectangles is shown in Figure 1. 



    The corresponding boundary is the whole set of line segments drawn in Figure 2. 



    The vertices of all rectangles have integer coordinates.
     

    Input

    Your program is to read from standard input. The first line contains the number of rectangles pasted on the wall. In each of the subsequent lines, one can find the integer coordinates of the lower left vertex and the upper right vertex of each rectangle. The values of those coordinates are given as ordered pairs consisting of an x-coordinate followed by a y-coordinate. 

    0 <= number of rectangles < 5000 
    All coordinates are in the range [-10000,10000] and any existing rectangle has a positive area.

    Please process to the end of file.
     

    Output

    Your program is to write to standard output. The output must contain a single line with a non-negative integer which corresponds to the perimeter for the input rectangles.
     

    Sample Input

    7
    -15 0 5 10
    -5 8 20 25
    15 -4 24 14
    0 -6 16 4
    2 15 10 22
    30 10 36 20
    34 0 40 16

    Sample Output

    228

    Source

     
    解题:线段树扫描线
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <algorithm>
     4 #define LL long long
     5 using namespace std;
     6 const int maxn = 100000;
     7 struct node{
     8     int lt,rt,cover,len;
     9 }tree[maxn<<2];
    10 struct line{
    11     int x,y,h,del;
    12     line(int a = 0,int b = 0,int c = 0,int d = 0){
    13         x = a;
    14         y = b;
    15         h = c;
    16         del = d;
    17     }
    18     bool operator<(const line& t)const{
    19         return h == t.h?del > t.del:h < t.h;//特别注意此处
    20     }
    21 }nx[maxn],ny[maxn];
    22 void build(int lt,int rt,int v){
    23     tree[v].lt = lt;
    24     tree[v].rt = rt;
    25     tree[v].cover = tree[v].len = 0;
    26     if(lt + 1 == rt) return;
    27     int mid = (lt + rt)>>1;
    28     build(lt,mid,v<<1);
    29     build(mid,rt,v<<1|1);
    30 }
    31 void modify(int v){
    32     if(tree[v].cover) tree[v].len = tree[v].rt - tree[v].lt;
    33     else if(tree[v].lt + 1 == tree[v].rt) tree[v].len = 0;
    34     else tree[v].len = tree[v<<1].len + tree[v<<1|1].len;
    35 }
    36 void update(int lt,int rt,int v,int del){
    37     if(tree[v].lt >= lt && tree[v].rt <= rt){
    38         tree[v].cover += del;
    39         modify(v);
    40         return;
    41     }
    42     int mid = (tree[v].lt + tree[v].rt)>>1;
    43     if(lt < mid) update(lt,rt,v<<1,del);
    44     if(rt > mid) update(lt,rt,v<<1|1,del);
    45     modify(v);
    46 }
    47 int main(){
    48     int n,tot,x1,x2,y1,y2;
    49     while(~scanf("%d",&n)){
    50         build(-20000,20000,1);
    51         for(int i = tot = 0; i < n; ++i){
    52             scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
    53             nx[tot] = line(x1,x2,y1,1);
    54             nx[tot+1] = line(x1,x2,y2,-1);
    55             ny[tot] = line(y1,y2,x1,1);
    56             ny[tot+1] = line(y1,y2,x2,-1);
    57             tot += 2;
    58         }
    59         sort(nx,nx+tot);
    60         sort(ny,ny+tot);
    61         LL ans = 0,pre = 0;
    62         for(int i = 0; i < tot; ++i){
    63             update(nx[i].x,nx[i].y,1,nx[i].del);
    64             ans += abs(tree[1].len - pre);
    65             pre = tree[1].len;
    66         }
    67         for(int i = pre = 0; i < tot; ++i){
    68             update(ny[i].x,ny[i].y,1,ny[i].del);
    69             ans += abs(tree[1].len - pre);
    70             pre = tree[1].len;
    71         }
    72         printf("%I64d
    ",ans);
    73     }
    74     return 0;
    75 }
    View Code
  • 相关阅读:
    前端通过Nginx反向代理解决跨域问题
    SpringMVC解决跨域问题
    SpringMVC空字符串转为null
    什么是优秀的程序员
    Windows下Nginx实现负载均衡
    SpringMVC实现PUT请求上传文件
    设计模式解密(6)
    设计模式解密(5)- 外观模式(门面模式)
    设计模式解密(4)- 模板方法模式
    eclipse上传新项目到GitHub
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4366992.html
Copyright © 2020-2023  润新知