• HDU 4856 Tunnels


    Tunnels

    Time Limit: 1500ms
    Memory Limit: 32768KB
    This problem will be judged on HDU. Original ID: 4856
    64-bit integer IO format: %I64d      Java class name: Main
     
    Bob is travelling in Xi’an. He finds many secret tunnels beneath the city. In his eyes, the city is a grid. He can’t enter a grid with a barrier. In one minute, he can move into an adjacent grid with no barrier. Bob is full of curiosity and he wants to visit all of the secret tunnels beneath the city. To travel in a tunnel, he has to walk to the entrance of the tunnel and go out from the exit after a fabulous visit. He can choose where he starts and he will travel each of the tunnels once and only once. Now he wants to know, how long it will take him to visit all the tunnels (excluding the time when he is in the tunnels).
     

    Input

    The input contains mutiple testcases. Please process till EOF.
    For each testcase, the first line contains two integers N (1 ≤ N ≤ 15), the side length of the square map and M (1 ≤ M ≤ 15), the number of tunnels.
    The map of the city is given in the next N lines. Each line contains exactly N characters. Barrier is represented by “#” and empty grid is represented by “.”.
    Then M lines follow. Each line consists of four integers x1, y1, x2, y2, indicating there is a tunnel with entrence in (x1, y1) and exit in (x2, y2). It’s guaranteed that (x1, y1) and (x2, y2) in the map are both empty grid.
     

    Output

    For each case, output a integer indicating the minimal time Bob will use in total to walk between tunnels.
    If it is impossible for Bob to visit all the tunnels, output -1.
     

    Sample Input

    5 4
    ....#
    ...#.
    .....
    .....
    .....
    2 3 1 4
    1 2 3 5
    2 3 3 1
    5 4 2 1

    Sample Output

    7

    Source

     
    解题:状压dp。1<<(j-1)表示第i条隧道被选。
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <climits>
     7 #include <vector>
     8 #include <queue>
     9 #include <cstdlib>
    10 #include <string>
    11 #include <set>
    12 #include <stack>
    13 #define LL long long
    14 #define pii pair<int,int>
    15 #define INF 0x3f3f3f3f
    16 using namespace std;
    17 const int maxn = 20;
    18 struct Tunnels {
    19     int u,v,x,y;
    20 };
    21 Tunnels e[maxn];
    22 int n,m,g[maxn][maxn],dp[1<<15][maxn];
    23 char mp[maxn][maxn];
    24 int bfs(Tunnels &a,const Tunnels &b) {
    25     queue< pii >q;
    26     static int vis[maxn][maxn];
    27     static const int dir[4][2] = {0,-1,-1,0,1,0,0,1};
    28     memset(vis,-1,sizeof(vis));
    29     q.push(make_pair(a.x,a.y));
    30     vis[a.x][a.y] = 0;
    31     while(!q.empty()) {
    32         pii now = q.front();
    33         q.pop();
    34         if(now.first == b.u && now.second == b.v)
    35             return vis[now.first][now.second];
    36         for(int i = 0; i < 4; i++) {
    37             int x = now.first+dir[i][0];
    38             int y = now.second+dir[i][1];
    39             if(vis[x][y] > -1 || mp[x][y] == '#') continue;
    40             vis[x][y] = vis[now.first][now.second]+1;
    41             q.push(make_pair(x,y));
    42         }
    43     }
    44     return -1;
    45 }
    46 int main() {
    47     while(~scanf("%d %d",&n,&m)) {
    48         memset(mp,'#',sizeof(mp));
    49         for(int i = 1; i <= n; i++)
    50             scanf("%s",mp[i]+1);
    51         for(int i = 1; i <= m; i++)
    52             scanf("%d %d %d %d",&e[i].u,&e[i].v,&e[i].x,&e[i].y);
    53         for(int i = 1; i <= m; i++) {
    54             for(int j = 1; j <= m; j++)
    55                 g[i][j] = bfs(e[i],e[j]);
    56         }
    57         memset(dp,INF,sizeof(dp));
    58         for(int i = 1; i <= m; i++) dp[1<<(i-1)][i] = 0;
    59         int ans = INF;
    60         for(int i = 1,M = 1 << m; i < M; i++) {
    61             for(int j = 1; j <= m; j++) {
    62                 if(i&(1<<(j-1))) {
    63                     for(int k = 1; k <= m; k++) {
    64                         if(k == j || (i&(1<<(k-1)) == 0) || g[k][j] == -1) continue;
    65                         dp[i][j] = min(dp[i][j],dp[i^(1<<(j-1))][k]+g[k][j]);
    66                     }
    67                 }
    68                 if(i == M-1) ans = min(ans,dp[i][j]);
    69             }
    70         }
    71         printf("%d
    ",ans == INF?-1:ans);
    72     }
    73     return 0;
    74 }
    View Code
  • 相关阅读:
    STL之vector详解
    vim下使用YouCompleteMe实现代码提示、补全以及跳转设置
    Ceph之数据分布:CRUSH算法与一致性Hash
    ceph之crush算法示例
    Js正则Replace方法
    JS框架设计之加载器所在路径的探知一模块加载系统
    JS模块加载系统设计V1
    JS框架设计之模块加载系统
    Builder生成器(创建型模式)
    JS框架设计之主流框架的引入机制DomeReady一种子模块
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/3952457.html
Copyright © 2020-2023  润新知