• 一致性Hash算法在Redis分布式中的使用


     由于redis是单点,但是项目中不可避免的会使用多台Redis缓存服务器,那么怎么把缓存的Key均匀的映射到多台Redis服务器上,且随着缓存服务器的增加或减少时做到最小化的减少缓存Key的命中率呢?这样就需要我们自己实现分布式。

      Memcached对大家应该不陌生,通过把Key映射到Memcached Server上,实现快速读取。我们可以动态对其节点增加,并未影响之前已经映射到内存的Key与memcached Server之间的关系,这就是因为使用了一致性哈希。
    因为Memcached的哈希策略是在其客户端实现的,因此不同的客户端实现也有区别,以Spymemcache、Xmemcache为例,都是使用了KETAMA作为其实现。

      因此,我们也可以使用一致性hash算法来解决Redis分布式这个问题。在介绍一致性hash算法之前,先介绍一下我之前想的一个方法,怎么把Key均匀的映射到多台Redis Server上。

      由于LZ水平有限且对Redis研究的不深,文中有写的不对的地方请指正。

    方案一

    该方案是前几天想的一个方法,主要思路是通过对缓存Key中的字母和数字的ascii码值求sum,该sum值对Redis Server总数取余得到的数字即为该Key映射到的Redis Server,该方法有一个很大的缺陷就是当Redis Server增加或减少时,基本上所有的Key都映射不到对应的的Redis Server了。代码如下:

     /// <summary>
            /// 根据缓存的Key映射对应的Server
            /// </summary>
            /// <param name="Key"></param>
            /// <returns></returns>
            public static RedisClient GetRedisClientByKey(string Key)
            {
                List<RedisClientInfo> RedisClientList = new List<RedisClientInfo>();
                RedisClientList.Add(new RedisClientInfo() { Num = 0, IPPort = "127.0.0.1:6379" });
                RedisClientList.Add(new RedisClientInfo() { Num = 1, IPPort = "127.0.0.1:9001" });
    
                char[] charKey = Key.ToCharArray();
                //记录Key中的所有字母与数字的ascii码和
                int KeyNum = 0;
                //记录余数
                int Num = 0;
                foreach (var c in charKey)
                {
                    if ((c >= 'a' && 'z' >= c) || (c >= 'A' && 'Z' >= c))
                    {
                        System.Text.ASCIIEncoding asciiEncoding = new System.Text.ASCIIEncoding();
                        KeyNum = KeyNum + (int)asciiEncoding.GetBytes(c.ToString())[0];
                    }
                    if (c >= '1' && '9' >= c)
                    {
                        KeyNum += Convert.ToInt32(c.ToString());
                    }
                }
                Num = KeyNum % RedisClientList.Count;
                return new RedisClient(RedisClientList.Where(it => it.Num == Num).First().IPPort);
            }
            //Redis客户端信息
            public class RedisClientInfo
            {
                //Redis Server编号
                public int Num { get; set; }
                //Redis Server IP地址和端口号
                public string IPPort { get; set; }
            }

    方案二

    1、分布式实现

    通过key做一致性哈希,实现key对应redis结点的分布。

    一致性哈希的实现:

    1. hash值计算:通过支持MD5与MurmurHash两种计算方式,默认是采用MurmurHash,高效的hash计算。
    2. 一致性的实现:通过java的TreeMap来模拟环状结构,实现均匀分布

    什么也不多说了,直接上代码吧,LZ也是只知道点皮毛,代码中还有一些看不懂的地方,留着以后慢慢琢磨

    public class KetamaNodeLocator
        {
            //原文中的JAVA类TreeMap实现了Comparator方法,这里我图省事,直接用了net下的SortedList,其中Comparer接口方法)
            private SortedList<long, string> ketamaNodes = new SortedList<long, string>();
            private HashAlgorithm hashAlg;
            private int numReps = 160;
            //此处参数与JAVA版中有区别,因为使用的静态方法,所以不再传递HashAlgorithm alg参数
            public KetamaNodeLocator(List<string> nodes/*,int nodeCopies*/)
            {
                ketamaNodes = new SortedList<long, string>();
                //numReps = nodeCopies;
                //对所有节点,生成nCopies个虚拟结点
                foreach (string node in nodes)
                {
                    //每四个虚拟结点为一组
                    for (int i = 0; i < numReps / 4; i++)
                    {
                        //getKeyForNode方法为这组虚拟结点得到惟一名称 
                        byte[] digest = HashAlgorithm.computeMd5(node + i);
                        /** Md5是一个16字节长度的数组,将16字节的数组每四个字节一组,分别对应一个虚拟结点,这就是为什么上面把虚拟结点四个划分一组的原因*/
                        for (int h = 0; h < 4; h++)
                        {
                            long m = HashAlgorithm.hash(digest, h);
                            ketamaNodes[m] = node;
                        }
                    }
                }
            }
            public string GetPrimary(string k)
            {
                byte[] digest = HashAlgorithm.computeMd5(k);
                string rv = GetNodeForKey(HashAlgorithm.hash(digest, 0));
                return rv;
            }
            string GetNodeForKey(long hash)
            {
                string rv;
                long key = hash;
                //如果找到这个节点,直接取节点,返回   
                if (!ketamaNodes.ContainsKey(key))
                {
                    //得到大于当前key的那个子Map,然后从中取出第一个key,就是大于且离它最近的那个key 说明详见: http://www.javaeye.com/topic/684087
                    var tailMap = from coll in ketamaNodes
                                  where coll.Key > hash
                                  select new { coll.Key };
                    if (tailMap == null || tailMap.Count() == 0)
                        key = ketamaNodes.FirstOrDefault().Key;
                    else
                        key = tailMap.FirstOrDefault().Key;
                }
                rv = ketamaNodes[key];
                return rv;
            }
        }
        public class HashAlgorithm
        {
            public static long hash(byte[] digest, int nTime)
            {
                long rv = ((long)(digest[3 + nTime * 4] & 0xFF) << 24)
                        | ((long)(digest[2 + nTime * 4] & 0xFF) << 16)
                        | ((long)(digest[1 + nTime * 4] & 0xFF) << 8)
                        | ((long)digest[0 + nTime * 4] & 0xFF);
                return rv & 0xffffffffL; /* Truncate to 32-bits */
            }
            /**
             * Get the md5 of the given key.
             */
            public static byte[] computeMd5(string k)
            {
                MD5 md5 = new MD5CryptoServiceProvider();
    
                byte[] keyBytes = md5.ComputeHash(Encoding.UTF8.GetBytes(k));
                md5.Clear();
                //md5.update(keyBytes);
                //return md5.digest();
                return keyBytes;
            }
        }

    2、分布式测试

    1、假设有两个server:0001和0002,循环调用10次看看Key值能不能均匀的映射到server上,代码如下:

    static void Main(string[] args)
            {
                //假设的server
                List<string> nodes = new List<string>() { "0001","0002" };
                KetamaNodeLocator k = new KetamaNodeLocator(nodes);
                string str = "";
                for (int i = 0; i < 10; i++)
                {
                    string Key="user_" + i;
                    str += string.Format("Key:{0}分配到的Server为:{1}
    
    ", Key, k.GetPrimary(Key));
                }
                
                Console.WriteLine(str);
               
                Console.ReadLine();
                 
            }

    程序运行两次的结果如下,发现Key基本上均匀的分配到Server节点上了。

    2、我们在添加一个0003的server节点,代码如下:

    static void Main(string[] args)
            {
                //假设的server
                List<string> nodes = new List<string>() { "0001","0002" ,"0003"};
                KetamaNodeLocator k = new KetamaNodeLocator(nodes);
                string str = "";
                for (int i = 0; i < 10; i++)
                {
                    string Key="user_" + i;
                    str += string.Format("Key:{0}分配到的Server为:{1}
    
    ", Key, k.GetPrimary(Key));
                }
                
                Console.WriteLine(str);
               
                Console.ReadLine();
                 
            }
    

      

    程序运行两次的结果如下:

    对比第一次的运行结果发现只有user_5,user_7,user_9的缓存丢失,其他的缓存还可以命中。

    3、我们去掉server 0002,运行两次的结果如下:

    对比第二次和本次运行结果发现 user_0,user_1,user_6 缓存丢失。

    结论

    通过一致性hash算法可以很好的解决Redis分布式的问题,且当Redis server增加或减少的时候,之前存储的缓存命中率还是比较高的。

    http://www.cnblogs.com/lc-chenlong/p/4195814.html

    http://blog.csdn.net/cywosp/article/details/23397179/

  • 相关阅读:
    直线型一阶倒立摆5---硬件平台搭建
    PE view---重要参数--C语言实现
    A1132. Cut Integer
    A1131. Subway Map (30)
    A1130. Infix Expression
    A1129. Recommendation System
    A1128. N Queens Puzzle
    A1127. ZigZagging on a Tree
    A1126. Eulerian Path
    A1125. Chain the Ropes
  • 原文地址:https://www.cnblogs.com/cr7/p/5543558.html
Copyright © 2020-2023  润新知