• Android的线程和线程池


    线程在Android中是一个很重要的概念,从用途上来说,线程分为主线程和子线程,主线程主要处理和界面相关的事情,而子线程则往往用于执行耗时操作。在Android中扮演线程角色的还有很多,比如AsyncTask和IntentService,同时HandlerThread也是一种特殊的线程,但他们本质都是传统的线程。AsyncTask底层用到了线程池,对于IntentService和HandlerThread来说,它们的底层则直接使用了线程。

    不同形式的线程虽然都是线程,但是它们具有不同的特性和使用场景。AsyncTask封装了线程池和Handler,它主要是为了方便开发者在子线程中更新UI,HandlerThread是一中消息循环的线程,在它的内部可以使用Handler。IntentService是一个服务,系统对其进行了封装使其可以更方便地执行后台任务,IntentService内部采用HandlerThread来执行任务,当任务执行完毕后IntentService会自动退出。

    在操作系统中,线程是操作系统的调度的最小单元,同时线程又是一种受限的系统资源,即线程不可能无限制地产生,并且线程的创建和销毁都会相应的开销。如果一个进程中频繁地创建和销毁线程,这显然不是高效的做法,正确的做法是采用线程池,在这个线程池中会缓存一定数量的线程,通过线程池就可以避免因为频繁创建和销毁线程所带来的系统开销。

    Android中的线程形态

    AsyncTask

    AsyncTask是一种轻量级的异步任务类,它可以在线程池中执行后台任务,然后把执行的进度和最终结果传递给主线程并在主线程中更新UI。从实现上来说,AsyncTask封装了Thread和Handler,通过AsyncTask可以更加方便地执行后台任务以及在主线程中访问UI,但是AsyncTask并不适合进行特别耗时的后台任务,对于特别耗时的任务来说,用线程池比较好点。

    AsyncTask提供了4个核心方法:

    • onPreExecute(),在主线程中执行,在异步任务执行之前,次方法会被调用,做一些准备工作。
    • doInBackground(Params…params),在线程池中执行,次方法用于执行异步任务,params参数表示异步任务的输入参数。
    • onProgressUpdate(Progress…values),在主线程中执行,当后台任务的执行进度发生改变时此方法会被调用。
    • onPostExecute(Result result),在主线程中执行,在异步任务执行之后,此方法会被调用。

    看下源码:

    public abstract class AsyncTask<Params, Progress, Result> {
        private static final String LOG_TAG = "AsyncTask";
    
        private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
        // We want at least 2 threads and at most 4 threads in the core pool,
        // preferring to have 1 less than the CPU count to avoid saturating
        // the CPU with background work
        private static final int CORE_POOL_SIZE = Math.max(2, Math.min(CPU_COUNT - 1, 4));
        private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
        private static final int KEEP_ALIVE_SECONDS = 30;
    
        private static final ThreadFactory sThreadFactory = new ThreadFactory() {
            private final AtomicInteger mCount = new AtomicInteger(1);
    
            public Thread newThread(Runnable r) {
                return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
            }
        };
    
        private static final BlockingQueue<Runnable> sPoolWorkQueue =
                new LinkedBlockingQueue<Runnable>(128);
    
        /**
         * An {@link Executor} that can be used to execute tasks in parallel.
         */
        public static final Executor THREAD_POOL_EXECUTOR;
    
        static {
            ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
                    CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE_SECONDS, TimeUnit.SECONDS,
                    sPoolWorkQueue, sThreadFactory);
            threadPoolExecutor.allowCoreThreadTimeOut(true);
            THREAD_POOL_EXECUTOR = threadPoolExecutor;
        }
    
        /**
         * An {@link Executor} that executes tasks one at a time in serial
         * order.  This serialization is global to a particular process.
         */
        public static final Executor SERIAL_EXECUTOR = new SerialExecutor();
    
        private static final int MESSAGE_POST_RESULT = 0x1;
        private static final int MESSAGE_POST_PROGRESS = 0x2;
    
        private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
        private static InternalHandler sHandler;
    
        private final WorkerRunnable<Params, Result> mWorker;
        private final FutureTask<Result> mFuture;
    
        private volatile Status mStatus = Status.PENDING;
        
        private final AtomicBoolean mCancelled = new AtomicBoolean();
        private final AtomicBoolean mTaskInvoked = new AtomicBoolean();
    
        private static class SerialExecutor implements Executor {
            final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
            Runnable mActive;
    
            public synchronized void execute(final Runnable r) {
                mTasks.offer(new Runnable() {
                    public void run() {
                        try {
                            r.run();
                        } finally {
                            scheduleNext();
                        }
                    }
                });
                if (mActive == null) {
                    scheduleNext();
                }
            }
    
            protected synchronized void scheduleNext() {
                if ((mActive = mTasks.poll()) != null) {
                    THREAD_POOL_EXECUTOR.execute(mActive);
                }
            }
        }
    
        /**
         * Indicates the current status of the task. Each status will be set only once
         * during the lifetime of a task.
         */
        public enum Status {
            /**
             * Indicates that the task has not been executed yet.
             */
            PENDING,
            /**
             * Indicates that the task is running.
             */
            RUNNING,
            /**
             * Indicates that {@link AsyncTask#onPostExecute} has finished.
             */
            FINISHED,
        }
    
        private static Handler getHandler() {
            synchronized (AsyncTask.class) {
                if (sHandler == null) {
                    sHandler = new InternalHandler();
                }
                return sHandler;
            }
        }
    
        /** @hide */
        public static void setDefaultExecutor(Executor exec) {
            sDefaultExecutor = exec;
        }
    
        /**
         * Creates a new asynchronous task. This constructor must be invoked on the UI thread.
         */
        public AsyncTask() {
            mWorker = new WorkerRunnable<Params, Result>() {
                public Result call() throws Exception {
                    mTaskInvoked.set(true);
                    Result result = null;
                    try {
                        Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
                        //noinspection unchecked
                        result = doInBackground(mParams);
                        Binder.flushPendingCommands();
                    } catch (Throwable tr) {
                        mCancelled.set(true);
                        throw tr;
                    } finally {
                        postResult(result);
                    }
                    return result;
                }
            };
    
            mFuture = new FutureTask<Result>(mWorker) {
                @Override
                protected void done() {
                    try {
                        postResultIfNotInvoked(get());
                    } catch (InterruptedException e) {
                        android.util.Log.w(LOG_TAG, e);
                    } catch (ExecutionException e) {
                        throw new RuntimeException("An error occurred while executing doInBackground()",
                                e.getCause());
                    } catch (CancellationException e) {
                        postResultIfNotInvoked(null);
                    }
                }
            };
        }
    
        private void postResultIfNotInvoked(Result result) {
            final boolean wasTaskInvoked = mTaskInvoked.get();
            if (!wasTaskInvoked) {
                postResult(result);
            }
        }
    
        private Result postResult(Result result) {
            @SuppressWarnings("unchecked")
            Message message = getHandler().obtainMessage(MESSAGE_POST_RESULT,
                    new AsyncTaskResult<Result>(this, result));
            message.sendToTarget();
            return result;
        }
    
        /**
         * Returns the current status of this task.
         *
         * @return The current status.
         */
        public final Status getStatus() {
            return mStatus;
        }
    
        /**
         * Override this method to perform a computation on a background thread. The
         * specified parameters are the parameters passed to {@link #execute}
         * by the caller of this task.
         *
         * This method can call {@link #publishProgress} to publish updates
         * on the UI thread.
         *
         * @param params The parameters of the task.
         *
         * @return A result, defined by the subclass of this task.
         *
         * @see #onPreExecute()
         * @see #onPostExecute
         * @see #publishProgress
         */
        @WorkerThread
        protected abstract Result doInBackground(Params... params);
    
        /**
         * Runs on the UI thread before {@link #doInBackground}.
         *
         * @see #onPostExecute
         * @see #doInBackground
         */
        @MainThread
        protected void onPreExecute() {
        }
    
        /**
         * <p>Runs on the UI thread after {@link #doInBackground}. The
         * specified result is the value returned by {@link #doInBackground}.</p>
         * 
         * <p>This method won't be invoked if the task was cancelled.</p>
         *
         * @param result The result of the operation computed by {@link #doInBackground}.
         *
         * @see #onPreExecute
         * @see #doInBackground
         * @see #onCancelled(Object) 
         */
        @SuppressWarnings({"UnusedDeclaration"})
        @MainThread
        protected void onPostExecute(Result result) {
        }
    
        /**
         * Runs on the UI thread after {@link #publishProgress} is invoked.
         * The specified values are the values passed to {@link #publishProgress}.
         *
         * @param values The values indicating progress.
         *
         * @see #publishProgress
         * @see #doInBackground
         */
        @SuppressWarnings({"UnusedDeclaration"})
        @MainThread
        protected void onProgressUpdate(Progress... values) {
        }
    
        /**
         * <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and
         * {@link #doInBackground(Object[])} has finished.</p>
         * 
         * <p>The default implementation simply invokes {@link #onCancelled()} and
         * ignores the result. If you write your own implementation, do not call
         * <code>super.onCancelled(result)</code>.</p>
         *
         * @param result The result, if any, computed in
         *               {@link #doInBackground(Object[])}, can be null
         * 
         * @see #cancel(boolean)
         * @see #isCancelled()
         */
        @SuppressWarnings({"UnusedParameters"})
        @MainThread
        protected void onCancelled(Result result) {
            onCancelled();
        }    
        
        /**
         * <p>Applications should preferably override {@link #onCancelled(Object)}.
         * This method is invoked by the default implementation of
         * {@link #onCancelled(Object)}.</p>
         * 
         * <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and
         * {@link #doInBackground(Object[])} has finished.</p>
         *
         * @see #onCancelled(Object) 
         * @see #cancel(boolean)
         * @see #isCancelled()
         */
        @MainThread
        protected void onCancelled() {
        }
    
        /**
         * Returns <tt>true</tt> if this task was cancelled before it completed
         * normally. If you are calling {@link #cancel(boolean)} on the task,
         * the value returned by this method should be checked periodically from
         * {@link #doInBackground(Object[])} to end the task as soon as possible.
         *
         * @return <tt>true</tt> if task was cancelled before it completed
         *
         * @see #cancel(boolean)
         */
        public final boolean isCancelled() {
            return mCancelled.get();
        }
    
        /**
         * <p>Attempts to cancel execution of this task.  This attempt will
         * fail if the task has already completed, already been cancelled,
         * or could not be cancelled for some other reason. If successful,
         * and this task has not started when <tt>cancel</tt> is called,
         * this task should never run. If the task has already started,
         * then the <tt>mayInterruptIfRunning</tt> parameter determines
         * whether the thread executing this task should be interrupted in
         * an attempt to stop the task.</p>
         * 
         * <p>Calling this method will result in {@link #onCancelled(Object)} being
         * invoked on the UI thread after {@link #doInBackground(Object[])}
         * returns. Calling this method guarantees that {@link #onPostExecute(Object)}
         * is never invoked. After invoking this method, you should check the
         * value returned by {@link #isCancelled()} periodically from
         * {@link #doInBackground(Object[])} to finish the task as early as
         * possible.</p>
         *
         * @param mayInterruptIfRunning <tt>true</tt> if the thread executing this
         *        task should be interrupted; otherwise, in-progress tasks are allowed
         *        to complete.
         *
         * @return <tt>false</tt> if the task could not be cancelled,
         *         typically because it has already completed normally;
         *         <tt>true</tt> otherwise
         *
         * @see #isCancelled()
         * @see #onCancelled(Object)
         */
        public final boolean cancel(boolean mayInterruptIfRunning) {
            mCancelled.set(true);
            return mFuture.cancel(mayInterruptIfRunning);
        }
    
        /**
         * Waits if necessary for the computation to complete, and then
         * retrieves its result.
         *
         * @return The computed result.
         *
         * @throws CancellationException If the computation was cancelled.
         * @throws ExecutionException If the computation threw an exception.
         * @throws InterruptedException If the current thread was interrupted
         *         while waiting.
         */
        public final Result get() throws InterruptedException, ExecutionException {
            return mFuture.get();
        }
    
        /**
         * Waits if necessary for at most the given time for the computation
         * to complete, and then retrieves its result.
         *
         * @param timeout Time to wait before cancelling the operation.
         * @param unit The time unit for the timeout.
         *
         * @return The computed result.
         *
         * @throws CancellationException If the computation was cancelled.
         * @throws ExecutionException If the computation threw an exception.
         * @throws InterruptedException If the current thread was interrupted
         *         while waiting.
         * @throws TimeoutException If the wait timed out.
         */
        public final Result get(long timeout, TimeUnit unit) throws InterruptedException,
                ExecutionException, TimeoutException {
            return mFuture.get(timeout, unit);
        }
    
        /**
         * Executes the task with the specified parameters. The task returns
         * itself (this) so that the caller can keep a reference to it.
         * 
         * <p>Note: this function schedules the task on a queue for a single background
         * thread or pool of threads depending on the platform version.  When first
         * introduced, AsyncTasks were executed serially on a single background thread.
         * Starting with {@link android.os.Build.VERSION_CODES#DONUT}, this was changed
         * to a pool of threads allowing multiple tasks to operate in parallel. Starting
         * {@link android.os.Build.VERSION_CODES#HONEYCOMB}, tasks are back to being
         * executed on a single thread to avoid common application errors caused
         * by parallel execution.  If you truly want parallel execution, you can use
         * the {@link #executeOnExecutor} version of this method
         * with {@link #THREAD_POOL_EXECUTOR}; however, see commentary there for warnings
         * on its use.
         *
         * <p>This method must be invoked on the UI thread.
         *
         * @param params The parameters of the task.
         *
         * @return This instance of AsyncTask.
         *
         * @throws IllegalStateException If {@link #getStatus()} returns either
         *         {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}.
         *
         * @see #executeOnExecutor(java.util.concurrent.Executor, Object[])
         * @see #execute(Runnable)
         */
        @MainThread
        public final AsyncTask<Params, Progress, Result> execute(Params... params) {
            return executeOnExecutor(sDefaultExecutor, params);
        }
    
        /**
         * Executes the task with the specified parameters. The task returns
         * itself (this) so that the caller can keep a reference to it.
         * 
         * <p>This method is typically used with {@link #THREAD_POOL_EXECUTOR} to
         * allow multiple tasks to run in parallel on a pool of threads managed by
         * AsyncTask, however you can also use your own {@link Executor} for custom
         * behavior.
         * 
         * <p><em>Warning:</em> Allowing multiple tasks to run in parallel from
         * a thread pool is generally <em>not</em> what one wants, because the order
         * of their operation is not defined.  For example, if these tasks are used
         * to modify any state in common (such as writing a file due to a button click),
         * there are no guarantees on the order of the modifications.
         * Without careful work it is possible in rare cases for the newer version
         * of the data to be over-written by an older one, leading to obscure data
         * loss and stability issues.  Such changes are best
         * executed in serial; to guarantee such work is serialized regardless of
         * platform version you can use this function with {@link #SERIAL_EXECUTOR}.
         *
         * <p>This method must be invoked on the UI thread.
         *
         * @param exec The executor to use.  {@link #THREAD_POOL_EXECUTOR} is available as a
         *              convenient process-wide thread pool for tasks that are loosely coupled.
         * @param params The parameters of the task.
         *
         * @return This instance of AsyncTask.
         *
         * @throws IllegalStateException If {@link #getStatus()} returns either
         *         {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}.
         *
         * @see #execute(Object[])
         */
        @MainThread
        public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
                Params... params) {
            if (mStatus != Status.PENDING) {
                switch (mStatus) {
                    case RUNNING:
                        throw new IllegalStateException("Cannot execute task:"
                                + " the task is already running.");
                    case FINISHED:
                        throw new IllegalStateException("Cannot execute task:"
                                + " the task has already been executed "
                                + "(a task can be executed only once)");
                }
            }
    
            mStatus = Status.RUNNING;
    
            onPreExecute();
    
            mWorker.mParams = params;
            exec.execute(mFuture);
    
            return this;
        }
    
        /**
         * Convenience version of {@link #execute(Object...)} for use with
         * a simple Runnable object. See {@link #execute(Object[])} for more
         * information on the order of execution.
         *
         * @see #execute(Object[])
         * @see #executeOnExecutor(java.util.concurrent.Executor, Object[])
         */
        @MainThread
        public static void execute(Runnable runnable) {
            sDefaultExecutor.execute(runnable);
        }
    
        /**
         * This method can be invoked from {@link #doInBackground} to
         * publish updates on the UI thread while the background computation is
         * still running. Each call to this method will trigger the execution of
         * {@link #onProgressUpdate} on the UI thread.
         *
         * {@link #onProgressUpdate} will not be called if the task has been
         * canceled.
         *
         * @param values The progress values to update the UI with.
         *
         * @see #onProgressUpdate
         * @see #doInBackground
         */
        @WorkerThread
        protected final void publishProgress(Progress... values) {
            if (!isCancelled()) {
                getHandler().obtainMessage(MESSAGE_POST_PROGRESS,
                        new AsyncTaskResult<Progress>(this, values)).sendToTarget();
            }
        }
    
        private void finish(Result result) {
            if (isCancelled()) {
                onCancelled(result);
            } else {
                onPostExecute(result);
            }
            mStatus = Status.FINISHED;
        }
    
        private static class InternalHandler extends Handler {
            public InternalHandler() {
                super(Looper.getMainLooper());
            }
    
            @SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})
            @Override
            public void handleMessage(Message msg) {
                AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;
                switch (msg.what) {
                    case MESSAGE_POST_RESULT:
                        // There is only one result
                        result.mTask.finish(result.mData[0]);
                        break;
                    case MESSAGE_POST_PROGRESS:
                        result.mTask.onProgressUpdate(result.mData);
                        break;
                }
            }
        }
    
        private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> {
            Params[] mParams;
        }
    
        @SuppressWarnings({"RawUseOfParameterizedType"})
        private static class AsyncTaskResult<Data> {
            final AsyncTask mTask;
            final Data[] mData;
    
            AsyncTaskResult(AsyncTask task, Data... data) {
                mTask = task;
                mData = data;
            }
        }
    }
    

    从中我们知道了,线程池中线程的数量跟CPU内核多少有关,在一个处理队列中最多只有128个,这个并发数超过就会报异常,同时源码里也看到,是通过sHandler发送一个MESSAGE_POST_RESULT的消息进行最终处理的。

    sHandler是一个静态的Handler对象,为了能够将执行环境切换到主线程,这就要求sHandler这个对象必须在主线程中创建。由于静态成员会在加载类的时候进行初始化,因此这就变相要求AsyncTask的类必须在主线程中加载,否则同一个进程中的AsyncTask都无法正常工作。

    还有一点要注意下,从Android 3.0开始,默认情况下AsyncTask是串行执行的。但在Android 3.0之前是并行执行的。

    HandlerThread

    HandlerThread继承了Thread,它是一种可以使用Handler的Thread,它的实现很简单,就在run方法中通过Looper.prepare()来创建消息队列,并通过Looper.loop()来开启消息循环,这样在实际的使用中就允许在HandlerThread中创建Handler。看下源代码:

    public class HandlerThread extends Thread {
        int mPriority;
        int mTid = -1;
        Looper mLooper;
    
        public HandlerThread(String name) {
            super(name);
            mPriority = Process.THREAD_PRIORITY_DEFAULT;
        }
        
        /**
         * Constructs a HandlerThread.
         * @param name
         * @param priority The priority to run the thread at. The value supplied must be from 
         * {@link android.os.Process} and not from java.lang.Thread.
         */
        public HandlerThread(String name, int priority) {
            super(name);
            mPriority = priority;
        }
        
        /**
         * Call back method that can be explicitly overridden if needed to execute some
         * setup before Looper loops.
         */
        protected void onLooperPrepared() {
        }
    
        @Override
        public void run() {
            mTid = Process.myTid();
            Looper.prepare();
            synchronized (this) {
                mLooper = Looper.myLooper();
                notifyAll();
            }
            Process.setThreadPriority(mPriority);
            onLooperPrepared();
            Looper.loop();
            mTid = -1;
        }
        
        /**
         * This method returns the Looper associated with this thread. If this thread not been started
         * or for any reason is isAlive() returns false, this method will return null. If this thread 
         * has been started, this method will block until the looper has been initialized.  
         * @return The looper.
         */
        public Looper getLooper() {
            if (!isAlive()) {
                return null;
            }
            
            // If the thread has been started, wait until the looper has been created.
            synchronized (this) {
                while (isAlive() && mLooper == null) {
                    try {
                        wait();
                    } catch (InterruptedException e) {
                    }
                }
            }
            return mLooper;
        }
    
        /**
         * Quits the handler thread's looper.
         * <p>
         * Causes the handler thread's looper to terminate without processing any
         * more messages in the message queue.
         * </p><p>
         * Any attempt to post messages to the queue after the looper is asked to quit will fail.
         * For example, the {@link Handler#sendMessage(Message)} method will return false.
         * </p><p class="note">
         * Using this method may be unsafe because some messages may not be delivered
         * before the looper terminates.  Consider using {@link #quitSafely} instead to ensure
         * that all pending work is completed in an orderly manner.
         * </p>
         *
         * @return True if the looper looper has been asked to quit or false if the
         * thread had not yet started running.
         *
         * @see #quitSafely
         */
        public boolean quit() {
            Looper looper = getLooper();
            if (looper != null) {
                looper.quit();
                return true;
            }
            return false;
        }
    
        /**
         * Quits the handler thread's looper safely.
         * <p>
         * Causes the handler thread's looper to terminate as soon as all remaining messages
         * in the message queue that are already due to be delivered have been handled.
         * Pending delayed messages with due times in the future will not be delivered.
         * </p><p>
         * Any attempt to post messages to the queue after the looper is asked to quit will fail.
         * For example, the {@link Handler#sendMessage(Message)} method will return false.
         * </p><p>
         * If the thread has not been started or has finished (that is if
         * {@link #getLooper} returns null), then false is returned.
         * Otherwise the looper is asked to quit and true is returned.
         * </p>
         *
         * @return True if the looper looper has been asked to quit or false if the
         * thread had not yet started running.
         */
        public boolean quitSafely() {
            Looper looper = getLooper();
            if (looper != null) {
                looper.quitSafely();
                return true;
            }
            return false;
        }
    
        /**
         * Returns the identifier of this thread. See Process.myTid().
         */
        public int getThreadId() {
            return mTid;
        }
    }
    

    IntentService

    IntentService是一种特殊的Service,它继承了Service并且它是一种抽象类,因此必须创建它的子类才能使用IntentService。IntentService可用于执行后台耗时的任务,当任务执行后它会自动停止,同时由于IntentService是服务的原因,这导致他的优先级比单纯的线程要高很多,所以IntentService比较适合执行一些高优先级的后台任务,因为它的优先级高不容易被系统杀死。看下源码:

    public abstract class IntentService extends Service {
        private volatile Looper mServiceLooper;
        private volatile ServiceHandler mServiceHandler;
        private String mName;
        private boolean mRedelivery;
    
        private final class ServiceHandler extends Handler {
            public ServiceHandler(Looper looper) {
                super(looper);
            }
    
            @Override
            public void handleMessage(Message msg) {
                onHandleIntent((Intent)msg.obj);
                stopSelf(msg.arg1);
            }
        }
    
        /**
         * Creates an IntentService.  Invoked by your subclass's constructor.
         *
         * @param name Used to name the worker thread, important only for debugging.
         */
        public IntentService(String name) {
            super();
            mName = name;
        }
    
        /**
         * Sets intent redelivery preferences.  Usually called from the constructor
         * with your preferred semantics.
         *
         * <p>If enabled is true,
         * {@link #onStartCommand(Intent, int, int)} will return
         * {@link Service#START_REDELIVER_INTENT}, so if this process dies before
         * {@link #onHandleIntent(Intent)} returns, the process will be restarted
         * and the intent redelivered.  If multiple Intents have been sent, only
         * the most recent one is guaranteed to be redelivered.
         *
         * <p>If enabled is false (the default),
         * {@link #onStartCommand(Intent, int, int)} will return
         * {@link Service#START_NOT_STICKY}, and if the process dies, the Intent
         * dies along with it.
         */
        public void setIntentRedelivery(boolean enabled) {
            mRedelivery = enabled;
        }
    
        @Override
        public void onCreate() {
            // TODO: It would be nice to have an option to hold a partial wakelock
            // during processing, and to have a static startService(Context, Intent)
            // method that would launch the service & hand off a wakelock.
    
            super.onCreate();
            HandlerThread thread = new HandlerThread("IntentService[" + mName + "]");
            thread.start();
    
            mServiceLooper = thread.getLooper();
            mServiceHandler = new ServiceHandler(mServiceLooper);
        }
    
        @Override
        public void onStart(@Nullable Intent intent, int startId) {
            Message msg = mServiceHandler.obtainMessage();
            msg.arg1 = startId;
            msg.obj = intent;
            mServiceHandler.sendMessage(msg);
        }
    
        /**
         * You should not override this method for your IntentService. Instead,
         * override {@link #onHandleIntent}, which the system calls when the IntentService
         * receives a start request.
         * @see android.app.Service#onStartCommand
         */
        @Override
        public int onStartCommand(@Nullable Intent intent, int flags, int startId) {
            onStart(intent, startId);
            return mRedelivery ? START_REDELIVER_INTENT : START_NOT_STICKY;
        }
    
        @Override
        public void onDestroy() {
            mServiceLooper.quit();
        }
    
        /**
         * Unless you provide binding for your service, you don't need to implement this
         * method, because the default implementation returns null.
         * @see android.app.Service#onBind
         */
        @Override
        @Nullable
        public IBinder onBind(Intent intent) {
            return null;
        }
    
        /**
         * This method is invoked on the worker thread with a request to process.
         * Only one Intent is processed at a time, but the processing happens on a
         * worker thread that runs independently from other application logic.
         * So, if this code takes a long time, it will hold up other requests to
         * the same IntentService, but it will not hold up anything else.
         * When all requests have been handled, the IntentService stops itself,
         * so you should not call {@link #stopSelf}.
         *
         * @param intent The value passed to {@link
         *               android.content.Context#startService(Intent)}.
         *               This may be null if the service is being restarted after
         *               its process has gone away; see
         *               {@link android.app.Service#onStartCommand}
         *               for details.
         */
        @WorkerThread
        protected abstract void onHandleIntent(@Nullable Intent intent);
    }
    

    Android中的线程池

    线程池的优点:

    • 重用线程池中的线程,避免因为线程的创建和销毁所带来的性能开销。
    • 能有效控制线程池中的最大并发数,避免大量的线程之间因为互相抢占系统资源而导致的阻塞现象。
    • 能够对线程进行简单的管理,并提供定时执行以及指定间隔循环执行等功能。

    Android中的线程池的概念来源于Java中的Executor,Executor是一个接口,真正的线程池的实现为ThreadPoolExecutor。ThreadPoolExecutor提供一系列参数来配置线程池,通过不同的参数可以创建不同的线程池,从线程池的功能特性来说,线程池主要分为4类。

    ThreadPoolExecutor执行任务时大致遵循以下规则:

    1. 如果线程池中的线程数量未达到核心线程的数量,那么会直接启动一个核心线程来执行任务。
    2. 如果线程中的线程数量已经达到或者超过核心线程的数量,那么任务会被插入到任务队列中排队等待执行。
    3. 如果在步骤2中无法将任务插入到任务队列中,这往往是由于任务队列已经满了, 这个时候如果线程数量未达到线程池规定的最大值,那么会立刻启动一个非核心线程来执行任务。
    4. 如果步骤3的中线程数量已经达到线程池规定的最大值,那么就拒绝执行此任务,ThreadPoolExecutor会调用RejectedExecutionHandler的rejectedExecution方法来通知调用者。

    线程池主要有4类:

    • FixThreadPool:这是一种线程数量固定的线程池,当线程处于空闲的时候,并不会被回收,除非线程池被关闭了。
    • CachedThreadPool:这是一种线程数量不定的线程池,它只有非核心线程,并且最大线程数为Integer.MAX_VALUE。
    • ScheduledThreadPool:它的核心线程数量是固定的,而非核心线程数是没有限制的,并且当非核心线程闲置时会被立即回收。
    • SingleThreadExecutor:这类线程池内部只有一个核心线程,它确保所有的任务都在同一个线程中按顺序执行。

    阅读扩展

    源于对掌握的Android开发基础点进行整理,罗列下已经总结的文章,从中可以看到技术积累的过程。
    1,Android系统简介
    2,ProGuard代码混淆
    3,讲讲Handler+Looper+MessageQueue关系
    4,Android图片加载库理解
    5,谈谈Android运行时权限理解
    6,EventBus初理解
    7,Android 常见工具类
    8,对于Fragment的一些理解
    9,Android 四大组件之 " Activity "
    10,Android 四大组件之" Service "
    11,Android 四大组件之“ BroadcastReceiver "
    12,Android 四大组件之" ContentProvider "
    13,讲讲 Android 事件拦截机制
    14,Android 动画的理解
    15,Android 生命周期和启动模式
    16,Android IPC 机制
    17,View 的事件体系
    18,View 的工作原理
    19,理解 Window 和 WindowManager
    20,Activity 启动过程分析
    21,Service 启动过程分析
    22,Android 性能优化
    23,Android 消息机制
    24,Android Bitmap相关
    25,Android 线程和线程池
    26,Android 中的 Drawable 和动画
    27,RecylerView 中的装饰者模式
    28,Android 触摸事件机制
    29,Android 事件机制应用
    30,Cordova 框架的一些理解
    31,有关 Android 插件化思考
    32,开发人员必备技能——单元测试

  • 相关阅读:
    分享最好的HTML5编码教程和参考手册
    随机字符变换效果的jQuery插件开发教程
    拒绝用SEO的眼光来设计你的Meta标签
    GBin1教程:使用jQuery插件jquery.validationEngine实现表单验证功能
    vs 2010 程序发布时出现 TransformXml任务意外失败
    CSS hack
    javascript div 弹出可拖动窗口
    Javascript String类的属性及方法
    兼容浏览器的布局CSS
    该伙伴事务管理器已经禁止了它对远程/网络事务的支持
  • 原文地址:https://www.cnblogs.com/cr330326/p/6489716.html
Copyright © 2020-2023  润新知