• 图论学习笔记2


    多源最短路

    Floyd

    FloydFloydFloyd是基于DPDPDP思想。
    kkk为中转点,与iii, jjj都有边相连。
    那么可以得到dis[i][j]dis[i][j]dis[i][j]的最短路径的状态转移方程为:
    dis[k,i,j]=min(dis[k−1,i,j],dis[k−1,i,k]+dis[k−1,k,j]dis[k,i,j]=min(dis[k-1,i,j], dis[k-1,i,k]+dis[k-1,k,j]dis[k,i,j]=min(dis[k1,i,j],dis[k1,i,k]+dis[k1,k,j]

    memset(dis, 0x3f, sizeof(dis));
    memset(pre, 0, sizeof(pre));
    pre[u][v] = u;
    
    void Floyd() {
        for(int k = 1;k <= n; k++) {
            for(int i = 1;i <= n; i++) {
                for(int j = 1;j <= n; j++) {
                    if(dis[i][j] > dis[i][k] + dis[k][j]) {
                        dis[i][j] = dis[i][k] + dis[k][j];
                        pre[i][j] = pre[k][j];//输出路径
                    }    
                }
            }
        }
    }
    
    void print(int x) {
        if(pre[s][x] == 0) {
            printf("%d ", s);
            return ;
        }
        print(pre[s][x]);
        printf("%d ", x);
    }

    Dijkstra

    DijkstraDijkstraDijkstra使用贪心思想,求最短路的步骤如下:
    1.初始化:把dis[]dis[]dis[]置为∞,v[]v[]v[]置为0表示还没有访问过。
    2.循环遍历与当前节点相邻的节点,找出最短的距离。
    3.用找出的最短距离更新剩下的节点。

    一般版本
    void Dijkstra(int s, int t) {
        memset(dis, 0x3f, sizeof(dis));
        memset(v, 0, sizeof(v));
        v[s] = 1;
        for(int i = 1;i < n; i++) {
            int k = 0;
            for(int j = 1;j <= n; j++) {
                if(! v[j] && (k == 0 || dis[j] < dis[k])) k = j;
            }
            v[k] = 1;
            for(int j = 1;j <= n; j++) {
                if(dis[k] + w[k][j] < dis[j]) {
                    dis[j] = dis[k] + w[k][j];
                    pre[j] = k;
                }
            }
        }
    }
    
    void print(int x) {
        if(pre[x] == 0) {
            printf("%d ", x);
            return ;
        }
        print(pre[x]);
        printf("%d ", x);
    }
    邻接表优化
    struct edge {
        int v, w;
        edge(){}
        edge(int V, int W) {
            v = V;
            W = W;
        }
    };
    
    void DijkstraAdl(int s, int t) {
        memset(dis, 0x3f, sizeof(dis));
        memset(v, 0, sizeof(v));
        dis[s] = 0;
        for(int i = 1;i <= n; i++) {
            int u, v, w;
            for(int j = 1;j <= n; j++) {
                if(! v[i] && dis[i] < dis[u]) u = i;
            }
            v[u] = 1;
            for(int j = 0;j < G[u].size(); j++) {
                v = G[u][j].v, w = G[u][j].w;
                if(dis[v] > dis[u] + w) {
                    dis[v] = dis[u] + w;
                    pre[v] = u;
                }
            }
        }
    }
    优先队列优化
    #include <queue>
    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    const int MAXN = 2505;
    
    int n, m, s, t;
    bool vis[MAXN];
    int dis[MAXN];
    
    struct edge {
        int v, w;
        edge() {}
        edge(int V, int W) {
            v = V;
            w = W;
        }
    };
    
    struct node {
        int u, dis;
        node() {}
        node(int U, int D) {
            u = U;
            dis = D;
        }
        friend bool operator<(node x, node y) { return x.dis > y.dis; }
    };
    
    priority_queue<node> q;
    vector<edge> G[MAXN];
    
    void AddEdge(int u, int v, int w) {
        G[u].push_back(edge(v, w));
        G[v].push_back(edge(u, w));
    }
    
    void Dijkstra(int s, int t) {
        memset(vis, 0, sizeof(vis));
        memset(dis, 0x3f, sizeof(dis));
        dis[s] = 0;
        q.push(node(s, 0));
        while (q.size()) {
            int now = q.top().u;
            q.pop();
            if (vis[now])
                continue;
            vis[now] = 1;
            for (int i = 0; i < G[now].size(); i++) {
                int v = G[now][i].v;
                if (dis[v] > dis[now] + G[now][i].w) {
                    dis[v] = dis[now] + G[now][i].w;
                    q.push(node(v, dis[v]));
                }
            }
        }
    }
    
    int main() {
        scanf("%d %d %d %d", &n, &m, &s, &t);
        for (int i = 1; i <= m; i++) {
            int u, v, w;
            scanf("%d %d %d", &u, &v, &w);
            AddEdge(u, v, w);
        }
        Dijkstra(s, t);
        printf("%d
    ", dis[t]);
        return 0;
    }
  • 相关阅读:
    java实现模拟登陆
    springboot整合kafka(转)
    springboot使用缓存(三)
    springboot使用缓存(二)
    springboot使用缓存(一)
    springboot日期入参出参格式化注解:@DateTimeFormat 和 @JsonFormat (转)
    H5调用android相机拍照
    时间复杂度
    java guide面试突击版
    java面试手册-复制内容
  • 原文地址:https://www.cnblogs.com/cqbz-ChenJiage/p/13504656.html
Copyright © 2020-2023  润新知