• 图片文档倾斜矫正算法 附完整c代码


     2年前在学习图像算法的时候看到一个文档倾斜矫正的算法。

    也就是说能将一些文档图像进行旋转矫正,

    当然这个算法一般用于一些文档扫描软件做后处理

    或者用于ocr 文字识别做前处理。

    相关的关键词: 抗倾斜 反倾斜  Deskew 等等。

    最简单算法实现思路,采用 霍夫变换(Hough Transform)进行直线检测,

    当然也可以用霍夫变换检测圆。

    在倾斜矫正算法中,自然就是检测直线。

    通过对检测出来的直线进行角度判断,

    一般取 认可度最高的几条直线进行计算,

    最后求取均衡后的角度值。

    进行图像角度的旋转即可。

    大概算法步骤如下:

    1.转换为灰度图

    2.判断是否为文本图片,如果不是进行 进行 反相操作

    3.检测直线,进行角度判断

    4.通过角度进行图像旋转

    这么一个基本思路,当然想要检测得更加精准,

    可以做一些文本区域判断,图像修复增强之类的前处理操作。

    最近有点强迫症犯了,开始回归本源,强迫自己用c语言来实现,

    fastsin以及fastcos 来自 arm公司的开源项目。

    霍夫变换相关算法原理,请移步 百度 google 维基百科。

    或直接看代码实现,可了悟于心。

    有事没事,多看看业内大公司的开源项目,

    萝卜白菜都有,重点是学习其思路。

    嗯,有些网友可能会说,opencv一两行代码就可以做到了。

    对的,一些sdk,api,开源框架一两句代码是做到了,

    知道,用到,与真正做到,这是两条路。

    我只想说一句,愿世界和平。

    附完整代码:

    //如果是Windows的话,调用系统API ShellExecuteA打开图片
    #if defined(_MSC_VER)
    #define _CRT_SECURE_NO_WARNINGS
    #include <windows.h>
    #define USE_SHELL_OPEN
    #endif
    
    #define STB_IMAGE_STATIC
    #define STB_IMAGE_IMPLEMENTATION
    #include "stb_image.h"
    //ref:https://github.com/nothings/stb/blob/master/stb_image.h
    #define TJE_IMPLEMENTATION
    #include "tiny_jpeg.h" 
    //ref:https://github.com/serge-rgb/TinyJPEG/blob/master/tiny_jpeg.h
    #include <math.h>
    #include <io.h>    
    #include <math.h>
    #include <stdlib.h>
    #include <stdbool.h>
    
    //计时 
    #include <stdint.h>
    #if   defined(__APPLE__)
    # include <mach/mach_time.h>
    #elif defined(_WIN32)
    # define WIN32_LEAN_AND_MEAN
    # include <windows.h>
    #else // __linux
    # include <time.h>
    # ifndef  CLOCK_MONOTONIC //_RAW
    #  define CLOCK_MONOTONIC CLOCK_REALTIME
    # endif
    #endif
    static
    uint64_t nanotimer() {
        static int ever = 0;
    #if defined(__APPLE__)
        static mach_timebase_info_data_t frequency;
        if (!ever) {
            if (mach_timebase_info(&frequency) != KERN_SUCCESS) {
                return 0;
            }
            ever = 1;
        }
        return;
    #elif defined(_WIN32)
        static LARGE_INTEGER frequency;
        if (!ever) {
            QueryPerformanceFrequency(&frequency);
            ever = 1;
        }
        LARGE_INTEGER t;
        QueryPerformanceCounter(&t);
        return (t.QuadPart * (uint64_t)1e9) / frequency.QuadPart;
    #else // __linux
        struct timespec t;
        if (!ever) {
            if (clock_gettime(CLOCK_MONOTONIC, &spec) != 0) {
                return 0;
            }
            ever = 1;
        }
        clock_gettime(CLOCK_MONOTONIC, &spec);
        return (t.tv_sec * (uint64_t)1e9) + t.tv_nsec;
    #endif
    }
    
    
    static double now()
    {
        static uint64_t epoch = 0;
        if (!epoch) {
            epoch = nanotimer();
        }
        return (nanotimer() - epoch) / 1e9;
    };
    
    double  calcElapsed(double start, double end)
    {
        double took = -start;
        return took + end;
    }
    
    
    
    //存储当前传入文件位置的变量
    char  saveFile[1024];
    //加载图片
    unsigned char * loadImage(const char *filename, int *Width, int *Height, int *Channels)
    {
        return   stbi_load(filename, Width, Height, Channels, 0);
    }
    //保存图片
    void saveImage(const char *filename, int Width, int Height, int Channels, unsigned char *Output)
    {
    
        memcpy(saveFile + strlen(saveFile), filename, strlen(filename));
        *(saveFile + strlen(saveFile) + 1) = 0;
        //保存为jpg
        if (!tje_encode_to_file(saveFile, Width, Height, Channels, true, Output))
        {
            fprintf(stderr, "写入 JPEG 文件失败.
    ");
            return;
        }
    
    #ifdef USE_SHELL_OPEN 
        ShellExecuteA(NULL, "open", saveFile, NULL, NULL, SW_SHOW);
    #else
        //其他平台暂不实现
    #endif
    }
    
    
    #ifndef ClampToByte
    #define  ClampToByte(  v )  ( ((unsigned)(int)(v)) <(255) ? (v) : ((int)(v) < 0) ? (0) : (255)) 
    #endif 
    
    #define M_PI 3.14159265358979323846f
    
    typedef struct cpu_HoughLine
    {
        float Theta;
        int Radius;
        int Intensity;
        float RelativeIntensity;
    } cpu_HoughLine;
    
    
    typedef struct cpu_rect
    {
        int  x;
        int  y;
        int  Width;
        int  Height;
    } cpu_rect;
    
    #ifndef clamp
    #define clamp(value,min,max)  ((value) > (max )? (max ): (value) < (min) ? (min) : (value))
    #endif 
    
    #define FAST_MATH_TABLE_SIZE  512
    
    const float sinTable_f32[FAST_MATH_TABLE_SIZE + 1] = {
        0.00000000f, 0.01227154f, 0.02454123f, 0.03680722f, 0.04906767f, 0.06132074f,
        0.07356456f, 0.08579731f, 0.09801714f, 0.11022221f, 0.12241068f, 0.13458071f,
        0.14673047f, 0.15885814f, 0.17096189f, 0.18303989f, 0.19509032f, 0.20711138f,
        0.21910124f, 0.23105811f, 0.24298018f, 0.25486566f, 0.26671276f, 0.27851969f,
        0.29028468f, 0.30200595f, 0.31368174f, 0.32531029f, 0.33688985f, 0.34841868f,
        0.35989504f, 0.37131719f, 0.38268343f, 0.39399204f, 0.40524131f, 0.41642956f,
        0.42755509f, 0.43861624f, 0.44961133f, 0.46053871f, 0.47139674f, 0.48218377f,
        0.49289819f, 0.50353838f, 0.51410274f, 0.52458968f, 0.53499762f, 0.54532499f,
        0.55557023f, 0.56573181f, 0.57580819f, 0.58579786f, 0.59569930f, 0.60551104f,
        0.61523159f, 0.62485949f, 0.63439328f, 0.64383154f, 0.65317284f, 0.66241578f,
        0.67155895f, 0.68060100f, 0.68954054f, 0.69837625f, 0.70710678f, 0.71573083f,
        0.72424708f, 0.73265427f, 0.74095113f, 0.74913639f, 0.75720885f, 0.76516727f,
        0.77301045f, 0.78073723f, 0.78834643f, 0.79583690f, 0.80320753f, 0.81045720f,
        0.81758481f, 0.82458930f, 0.83146961f, 0.83822471f, 0.84485357f, 0.85135519f,
        0.85772861f, 0.86397286f, 0.87008699f, 0.87607009f, 0.88192126f, 0.88763962f,
        0.89322430f, 0.89867447f, 0.90398929f, 0.90916798f, 0.91420976f, 0.91911385f,
        0.92387953f, 0.92850608f, 0.93299280f, 0.93733901f, 0.94154407f, 0.94560733f,
        0.94952818f, 0.95330604f, 0.95694034f, 0.96043052f, 0.96377607f, 0.96697647f,
        0.97003125f, 0.97293995f, 0.97570213f, 0.97831737f, 0.98078528f, 0.98310549f,
        0.98527764f, 0.98730142f, 0.98917651f, 0.99090264f, 0.99247953f, 0.99390697f,
        0.99518473f, 0.99631261f, 0.99729046f, 0.99811811f, 0.99879546f, 0.99932238f,
        0.99969882f, 0.99992470f, 1.00000000f, 0.99992470f, 0.99969882f, 0.99932238f,
        0.99879546f, 0.99811811f, 0.99729046f, 0.99631261f, 0.99518473f, 0.99390697f,
        0.99247953f, 0.99090264f, 0.98917651f, 0.98730142f, 0.98527764f, 0.98310549f,
        0.98078528f, 0.97831737f, 0.97570213f, 0.97293995f, 0.97003125f, 0.96697647f,
        0.96377607f, 0.96043052f, 0.95694034f, 0.95330604f, 0.94952818f, 0.94560733f,
        0.94154407f, 0.93733901f, 0.93299280f, 0.92850608f, 0.92387953f, 0.91911385f,
        0.91420976f, 0.90916798f, 0.90398929f, 0.89867447f, 0.89322430f, 0.88763962f,
        0.88192126f, 0.87607009f, 0.87008699f, 0.86397286f, 0.85772861f, 0.85135519f,
        0.84485357f, 0.83822471f, 0.83146961f, 0.82458930f, 0.81758481f, 0.81045720f,
        0.80320753f, 0.79583690f, 0.78834643f, 0.78073723f, 0.77301045f, 0.76516727f,
        0.75720885f, 0.74913639f, 0.74095113f, 0.73265427f, 0.72424708f, 0.71573083f,
        0.70710678f, 0.69837625f, 0.68954054f, 0.68060100f, 0.67155895f, 0.66241578f,
        0.65317284f, 0.64383154f, 0.63439328f, 0.62485949f, 0.61523159f, 0.60551104f,
        0.59569930f, 0.58579786f, 0.57580819f, 0.56573181f, 0.55557023f, 0.54532499f,
        0.53499762f, 0.52458968f, 0.51410274f, 0.50353838f, 0.49289819f, 0.48218377f,
        0.47139674f, 0.46053871f, 0.44961133f, 0.43861624f, 0.42755509f, 0.41642956f,
        0.40524131f, 0.39399204f, 0.38268343f, 0.37131719f, 0.35989504f, 0.34841868f,
        0.33688985f, 0.32531029f, 0.31368174f, 0.30200595f, 0.29028468f, 0.27851969f,
        0.26671276f, 0.25486566f, 0.24298018f, 0.23105811f, 0.21910124f, 0.20711138f,
        0.19509032f, 0.18303989f, 0.17096189f, 0.15885814f, 0.14673047f, 0.13458071f,
        0.12241068f, 0.11022221f, 0.09801714f, 0.08579731f, 0.07356456f, 0.06132074f,
        0.04906767f, 0.03680722f, 0.02454123f, 0.01227154f, 0.00000000f, -0.01227154f,
        -0.02454123f, -0.03680722f, -0.04906767f, -0.06132074f, -0.07356456f,
        -0.08579731f, -0.09801714f, -0.11022221f, -0.12241068f, -0.13458071f,
        -0.14673047f, -0.15885814f, -0.17096189f, -0.18303989f, -0.19509032f,
        -0.20711138f, -0.21910124f, -0.23105811f, -0.24298018f, -0.25486566f,
        -0.26671276f, -0.27851969f, -0.29028468f, -0.30200595f, -0.31368174f,
        -0.32531029f, -0.33688985f, -0.34841868f, -0.35989504f, -0.37131719f,
        -0.38268343f, -0.39399204f, -0.40524131f, -0.41642956f, -0.42755509f,
        -0.43861624f, -0.44961133f, -0.46053871f, -0.47139674f, -0.48218377f,
        -0.49289819f, -0.50353838f, -0.51410274f, -0.52458968f, -0.53499762f,
        -0.54532499f, -0.55557023f, -0.56573181f, -0.57580819f, -0.58579786f,
        -0.59569930f, -0.60551104f, -0.61523159f, -0.62485949f, -0.63439328f,
        -0.64383154f, -0.65317284f, -0.66241578f, -0.67155895f, -0.68060100f,
        -0.68954054f, -0.69837625f, -0.70710678f, -0.71573083f, -0.72424708f,
        -0.73265427f, -0.74095113f, -0.74913639f, -0.75720885f, -0.76516727f,
        -0.77301045f, -0.78073723f, -0.78834643f, -0.79583690f, -0.80320753f,
        -0.81045720f, -0.81758481f, -0.82458930f, -0.83146961f, -0.83822471f,
        -0.84485357f, -0.85135519f, -0.85772861f, -0.86397286f, -0.87008699f,
        -0.87607009f, -0.88192126f, -0.88763962f, -0.89322430f, -0.89867447f,
        -0.90398929f, -0.90916798f, -0.91420976f, -0.91911385f, -0.92387953f,
        -0.92850608f, -0.93299280f, -0.93733901f, -0.94154407f, -0.94560733f,
        -0.94952818f, -0.95330604f, -0.95694034f, -0.96043052f, -0.96377607f,
        -0.96697647f, -0.97003125f, -0.97293995f, -0.97570213f, -0.97831737f,
        -0.98078528f, -0.98310549f, -0.98527764f, -0.98730142f, -0.98917651f,
        -0.99090264f, -0.99247953f, -0.99390697f, -0.99518473f, -0.99631261f,
        -0.99729046f, -0.99811811f, -0.99879546f, -0.99932238f, -0.99969882f,
        -0.99992470f, -1.00000000f, -0.99992470f, -0.99969882f, -0.99932238f,
        -0.99879546f, -0.99811811f, -0.99729046f, -0.99631261f, -0.99518473f,
        -0.99390697f, -0.99247953f, -0.99090264f, -0.98917651f, -0.98730142f,
        -0.98527764f, -0.98310549f, -0.98078528f, -0.97831737f, -0.97570213f,
        -0.97293995f, -0.97003125f, -0.96697647f, -0.96377607f, -0.96043052f,
        -0.95694034f, -0.95330604f, -0.94952818f, -0.94560733f, -0.94154407f,
        -0.93733901f, -0.93299280f, -0.92850608f, -0.92387953f, -0.91911385f,
        -0.91420976f, -0.90916798f, -0.90398929f, -0.89867447f, -0.89322430f,
        -0.88763962f, -0.88192126f, -0.87607009f, -0.87008699f, -0.86397286f,
        -0.85772861f, -0.85135519f, -0.84485357f, -0.83822471f, -0.83146961f,
        -0.82458930f, -0.81758481f, -0.81045720f, -0.80320753f, -0.79583690f,
        -0.78834643f, -0.78073723f, -0.77301045f, -0.76516727f, -0.75720885f,
        -0.74913639f, -0.74095113f, -0.73265427f, -0.72424708f, -0.71573083f,
        -0.70710678f, -0.69837625f, -0.68954054f, -0.68060100f, -0.67155895f,
        -0.66241578f, -0.65317284f, -0.64383154f, -0.63439328f, -0.62485949f,
        -0.61523159f, -0.60551104f, -0.59569930f, -0.58579786f, -0.57580819f,
        -0.56573181f, -0.55557023f, -0.54532499f, -0.53499762f, -0.52458968f,
        -0.51410274f, -0.50353838f, -0.49289819f, -0.48218377f, -0.47139674f,
        -0.46053871f, -0.44961133f, -0.43861624f, -0.42755509f, -0.41642956f,
        -0.40524131f, -0.39399204f, -0.38268343f, -0.37131719f, -0.35989504f,
        -0.34841868f, -0.33688985f, -0.32531029f, -0.31368174f, -0.30200595f,
        -0.29028468f, -0.27851969f, -0.26671276f, -0.25486566f, -0.24298018f,
        -0.23105811f, -0.21910124f, -0.20711138f, -0.19509032f, -0.18303989f,
        -0.17096189f, -0.15885814f, -0.14673047f, -0.13458071f, -0.12241068f,
        -0.11022221f, -0.09801714f, -0.08579731f, -0.07356456f, -0.06132074f,
        -0.04906767f, -0.03680722f, -0.02454123f, -0.01227154f, -0.00000000f
    };
    
    inline float  fastSin(
        float x)
    {
        float sinVal, fract, in;
        unsigned short  index;
        float a, b;
        int n;
        float findex;
    
        in = x * 0.159154943092f;
    
        n = (int)in;
    
        if (x < 0.0f)
        {
            n--;
        }
    
        in = in - (float)n;
    
        findex = (float)FAST_MATH_TABLE_SIZE * in;
        if (findex >= 512.0f) {
            findex -= 512.0f;
        }
    
        index = ((unsigned short)findex) & 0x1ff;
    
        fract = findex - (float)index;
    
        a = sinTable_f32[index];
        b = sinTable_f32[index + 1];
    
        sinVal = (1.0f - fract)*a + fract*b;
    
        return (sinVal);
    }
    
    inline float  fastCos(
        float x)
    {
        float cosVal, fract, in;
        unsigned short index;
        float a, b;
        int n;
        float findex;
    
        in = x * 0.159154943092f + 0.25f;
    
        n = (int)in;
    
        if (in < 0.0f)
        {
            n--;
        }
    
        in = in - (float)n;
    
        findex = (float)FAST_MATH_TABLE_SIZE * in;
        index = ((unsigned short)findex) & 0x1ff;
    
        fract = findex - (float)index;
    
        a = sinTable_f32[index];
        b = sinTable_f32[index + 1];
    
        cosVal = (1.0f - fract)*a + fract*b;
    
        return (cosVal);
    }
    
    void CPUImageGrayscaleFilter(unsigned char* Input, unsigned char* Output, int  Width, int  Height, int Stride)
    {
        int Channels = Stride / Width;
    
        const int B_WT = (int)(0.114 * 256 + 0.5);
        const int G_WT = (int)(0.587 * 256 + 0.5);
        const int R_WT = 256 - B_WT - G_WT;            //     int(0.299 * 256 + 0.5);
        int Channel = Stride / Width;
        if (Channel == 3)
        {
            for (int Y = 0; Y < Height; Y++)
            {
                unsigned char *LinePS = Input + Y * Stride;
                unsigned char *LinePD = Output + Y * Width;
                int X = 0;
                for (; X < Width - 4; X += 4, LinePS += Channel * 4)
                {
                    LinePD[X + 0] = (B_WT * LinePS[0] + G_WT * LinePS[1] + R_WT * LinePS[2]) >> 8;
                    LinePD[X + 1] = (B_WT * LinePS[3] + G_WT * LinePS[4] + R_WT * LinePS[5]) >> 8;
                    LinePD[X + 2] = (B_WT * LinePS[6] + G_WT * LinePS[7] + R_WT * LinePS[8]) >> 8;
                    LinePD[X + 3] = (B_WT * LinePS[9] + G_WT * LinePS[10] + R_WT * LinePS[11]) >> 8;
                }
                for (; X < Width; X++, LinePS += Channel)
                {
                    LinePD[X] = (B_WT * LinePS[0] + G_WT * LinePS[1] + R_WT * LinePS[2]) >> 8;
                }
            }
        }
        else if (Channel == 4)
        {
            for (int Y = 0; Y < Height; Y++)
            {
                unsigned char *LinePS = Input + Y * Stride;
                unsigned char *LinePD = Output + Y * Width;
                int X = 0;
                for (; X < Width - 4; X += 4, LinePS += Channel * 4)
                {
                    LinePD[X + 0] = (B_WT * LinePS[0] + G_WT * LinePS[1] + R_WT * LinePS[2]) >> 8;
                    LinePD[X + 1] = (B_WT * LinePS[4] + G_WT * LinePS[5] + R_WT * LinePS[6]) >> 8;
                    LinePD[X + 2] = (B_WT * LinePS[8] + G_WT * LinePS[9] + R_WT * LinePS[10]) >> 8;
                    LinePD[X + 3] = (B_WT * LinePS[12] + G_WT * LinePS[13] + R_WT * LinePS[14]) >> 8;
                }
                for (; X < Width; X++, LinePS += Channel)
                {
                    LinePD[X] = (B_WT * LinePS[0] + G_WT * LinePS[1] + R_WT * LinePS[2]) >> 8;
                }
            }
        }
        else if (Channel == 1)
        {
            if (Output != Input)
            {
                memcpy(Output, Input, Height*Stride);
            }
        }
    }
    
    void CPUImageColorInvertFilter(unsigned char* Input, unsigned char* Output, int  Width, int  Height, int Stride)
    {
        int Channels = Stride / Width; unsigned char invertMap[256] = { 0 };
        for (int pixel = 0; pixel < 256; pixel++)
        {
            invertMap[pixel] = (255 - pixel);
        }
        if (Channels == 1) {
            for (int Y = 0; Y < Height; Y++)
            {
                unsigned char*     pOutput = Output + (Y * Stride);
                unsigned char*     pInput = Input + (Y * Stride);
                for (int X = 0; X < Width; X++)
                {
                    pOutput[X] = invertMap[pInput[X]];
                }
            }
        }
        else
        {
    
            for (int Y = 0; Y < Height; Y++)
            {
                unsigned char*     pOutput = Output + (Y * Stride);
                unsigned char*     pInput = Input + (Y * Stride);
                for (int X = 0; X < Width; X++)
                {
                    pOutput[0] = invertMap[pInput[0]];
                    pOutput[1] = invertMap[pInput[1]];
                    pOutput[2] = invertMap[pInput[2]];
                    pInput += Channels;
                    pOutput += Channels;
                }
            }
        }
    }
    float  CPUImageCalcSkewAngle(unsigned char* Input, int Width, int Height, cpu_rect *CheckRectPtr, int maxSkewToDetect, int stepsPerDegree, int localPeakRadius, int nLineCount)
    {
        cpu_rect CheckRect = *CheckRectPtr;
        //确定指定的区域在原图片范围内
        CheckRect.x = clamp(CheckRect.x, 0, Width - 1);
        CheckRect.y = clamp(CheckRect.y, 0, Height - 1);
        CheckRect.Width = clamp(CheckRect.Width, 1, Width - 1);
        CheckRect.Height = clamp(CheckRect.Height, 1, Height - 1);
    
        // 处理参数
        maxSkewToDetect = clamp(maxSkewToDetect, 0, 91);
        localPeakRadius = clamp(localPeakRadius, 1, 10);
        stepsPerDegree = clamp(stepsPerDegree, 1, 10);
        int    houghHeight = (2 * maxSkewToDetect * stepsPerDegree);
        float    thetaStep = (2 * maxSkewToDetect * M_PI / 180) / houghHeight;
        int halfWidth = Width >> 1;
        int halfHeight = Height >> 1;
        // 计算 Hough 映射宽度
        int halfHoughWidth = (int)sqrtf((float)(halfWidth * halfWidth + halfHeight * halfHeight));
        int houghWidth = (halfHoughWidth * 2);
        float minTheta = 90.0f - maxSkewToDetect;
        unsigned short * houghMap = (unsigned short *)calloc(houghHeight*houghWidth, sizeof(unsigned short));
        float* sinMap = (float*)malloc(houghHeight * sizeof(float));
        float* cosMap = (float*)malloc(houghHeight * sizeof(float));
        cpu_HoughLine* HoughLines = (cpu_HoughLine*)calloc(houghHeight*houghWidth, sizeof(cpu_HoughLine));
        if (houghMap == NULL || sinMap == NULL || cosMap == NULL || HoughLines == NULL)
        {
            if (houghMap)
            {
                free(houghMap);
                houghMap = NULL;
            }
            if (sinMap)
            {
                free(sinMap);
                sinMap = NULL;
            }
            if (cosMap)
            {
                free(cosMap);
                cosMap = NULL;
            }
            if (HoughLines)
            {
                free(HoughLines);
                HoughLines = NULL;
            }
            return 0.0f;
        }
        else
        {
            // 预计算 Sin 与 Cos表
            float mt = (minTheta * M_PI / 180.0f);
            for (int i = 0; i < houghHeight; i++)
            {
                float cur_weight = mt + (i * thetaStep);
                sinMap[i] = fastSin(cur_weight);
                cosMap[i] = fastCos(cur_weight);
            }
        }
        int startX = -halfWidth + CheckRect.x;
        int startY = -halfHeight + CheckRect.y;
        int stopX = Width - halfWidth - (Width - CheckRect.Width);
        int stopY = Height - halfHeight - (Height - CheckRect.Height) - 1;
        int offset = Width - CheckRect.Width;
    
    
        unsigned char* src = Input + CheckRect.y *  Width + CheckRect.x;
        unsigned char* srcBelow = src + Width;
    
        for (int Y = startY; Y < stopY; Y++)
        {
            for (int X = startX; X < stopX; X++, src++, srcBelow++)
            {
                if ((*src < 128) && (*srcBelow >= 128))
                {
                    for (int theta = 0; theta < houghHeight; theta++)
                    {
                        int radius = (int)(cosMap[theta] * X - sinMap[theta] * Y) + halfHoughWidth;
    
                        if ((radius < 0) || (radius >= houghWidth))
                        {
                            continue;
                        }
    
                        houghMap[theta*houghWidth + radius]++;
                    }
                }
            }
            src += offset;
            srcBelow += offset;
        }
    
    
        // 找到 Hough映射的最大值
        float maxMapIntensity = 0.0000000001f;
        for (int theta = 0; theta < houghHeight; theta++)
        {
            unsigned short * houghMapLine = houghMap + theta*houghWidth;
            for (int radius = 0; radius < houghWidth; radius++)
            {
                maxMapIntensity = max(maxMapIntensity, houghMapLine[radius]);
            }
        }
        int minLineIntensity = Width / 10;
    
        // 收集大于或等于指定强度的直线
    
        int lineIntensity = 0;
        bool foundGreater = false;
        int lineSize = 0;
        for (int theta = 0; theta < houghHeight; theta++)
        {
            unsigned short * houghMapLine = houghMap + theta*houghWidth;
            for (int radius = 0; radius < houghWidth; radius++)
            {
                // 取当前强度
                lineIntensity = houghMapLine[radius];
    
                if (lineIntensity < minLineIntensity)
                {
                    continue;
                }
    
                foundGreater = false;
    
                // 检查邻边
                for (int t = theta - localPeakRadius, ttMax = theta + localPeakRadius; t < ttMax; t++)
                {
                    //跳过map值
                    if (t < 0)
                    {
                        continue;
                    }
                    if (t >= houghHeight)
                    {
                        break;
                    }
    
                    //如果不是局部最大则跳出
                    if (foundGreater == true)
                    {
                        break;
                    }
                    for (int r = radius - localPeakRadius, trMax = radius + localPeakRadius; r < trMax; r++)
                    {
                        //跳过map值
                        if (r < 0)
                        {
                            continue;
                        }
                        if (r >= houghWidth)
                        {
                            break;
                        }
                        // 当前值与邻边对比
                        if (houghMap[t*houghWidth + r] > lineIntensity)
                        {
                            foundGreater = true;
                            break;
                        }
                    }
                }
                // 可能是局部最大值,记录下来
                if (!foundGreater)
                {
                    cpu_HoughLine tempVar;
                    tempVar.Theta = 90.0f - maxSkewToDetect + (theta) / stepsPerDegree;
                    tempVar.Radius = (radius - halfHoughWidth);
                    tempVar.Intensity = lineIntensity;
                    tempVar.RelativeIntensity = lineIntensity / maxMapIntensity;
                    HoughLines[lineSize] = tempVar;
                    lineSize++;
                }
            }
        }
    
        float skewAngle = 0;
        if (lineSize > 0)
        {
            //排序,从大到小 
            cpu_HoughLine temp;
            for (int i = 0; i < lineSize; i++)
            {
                for (int j = 0; j < lineSize - 1; j++)
                {
                    if (HoughLines[j].Intensity < HoughLines[j + 1].Intensity)
                    {
                        temp = HoughLines[j + 1];
                        HoughLines[j + 1] = HoughLines[j];
                        HoughLines[j] = temp;
                    }
                }
            }
    
            int n = min(nLineCount, lineSize);
    
            float sumIntensity = 0;
    
            for (int i = 0; i < n; i++)
            {
                if (HoughLines[i].RelativeIntensity > 0.5f)
                {
                    skewAngle += (HoughLines[i].Theta * HoughLines[i].RelativeIntensity);
                    sumIntensity += HoughLines[i].RelativeIntensity;
                }
            }
            skewAngle = skewAngle / sumIntensity;
        }
        if (houghMap)
        {
            free(houghMap);
            houghMap = NULL;
        }
        if (sinMap)
        {
            free(sinMap);
            sinMap = NULL;
        }
        if (cosMap)
        {
            free(cosMap);
            cosMap = NULL;
        }
        if (HoughLines)
        {
            free(HoughLines);
            HoughLines = NULL;
        }
        if (skewAngle != 0)
        {
            return skewAngle - 90.0f;
        }
        return skewAngle;
    }
    
    void CPUImageRotateBilinear(unsigned char * Input, int Width, int Height, int Stride, unsigned char * Output, int outWidth, int outHeight, float angle, bool keepSize, int fillColorR, int fillColorG, int fillColorB)
    {
        if (Input == NULL || Output == NULL) return;
    
        float  oldXradius = (float)(Width - 1) / 2;
        float  oldYradius = (float)(Height - 1) / 2;
    
        // 输出图像的半径大小
    
        float  newXradius = (float)(outWidth - 1) / 2;
        float  newYradius = (float)(outHeight - 1) / 2;
    
        // 角度的正弦和余弦
        float angleRad = -angle * M_PI / 180.0f;
        float angleCos = fastCos(angleRad);
        float angleSin = fastSin(angleRad);
        int Channels = Stride / Width;
        int dstOffset = outWidth*Channels - ((Channels == 1) ? outWidth : outWidth * Channels);
    
        // 背景色
        unsigned char fillR = fillColorR;
        unsigned char fillG = fillColorG;
        unsigned char fillB = fillColorB;
        // 临界点
        int lastHeight = Height - 1;
        int lastWidth = Width - 1;
        // 四点指针   
        unsigned char* src = (unsigned char*)Input;
        unsigned char* dst = (unsigned char*)Output;
        // cx, cy  目标像素的相对于图像中心的坐标 
        if (Channels == 1)
        {
            float cy = -newYradius;
            for (int y = 0; y < outHeight; y++)
            {
                const     float    tx = angleSin * cy + oldXradius;
                const float    ty = angleCos * cy + oldYradius;
    
                float cx = -newXradius;
                for (int x = 0; x < outWidth; x++, dst++)
                {
                    // 初始起点位置
                    const     float    ox = tx + angleCos * cx;
                    const     float    oy = ty - angleSin * cx;
    
                    const int    ox1 = (int)ox;
                    const int    oy1 = (int)oy;
    
                    // 判断是否为有效区域 
                    if ((ox1 < 0) || (oy1 < 0) || (ox1 >= Width) || (oy1 >= Height))
                    {
                        // 无效区域填充背景 
                        *dst = fillG;
                    }
                    else
                    {
                        // 边界点处理 
                        const int    ox2 = (ox1 == lastWidth) ? ox1 : ox1 + 1;
                        const int    oy2 = (oy1 == lastHeight) ? oy1 : oy1 + 1;
                        float dx1 = ox - (float)ox1;
                        if (dx1 < 0)
                            dx1 = 0;
                        const     float dx2 = 1.0f - dx1;
                        float dy1 = oy - (float)oy1;
                        if (dy1 < 0)
                            dy1 = 0;
                        const     float dy2 = 1.0f - dy1;
    
                        unsigned char*p1 = src + oy1 * Stride;
                        unsigned char*    p2 = src + oy2 * Stride;
                        // 进行四点插值
                        *dst = (unsigned char)(
                            dy2 * (dx2 * p1[ox1] + dx1 * p1[ox2]) +
                            dy1 * (dx2 * p2[ox1] + dx1 * p2[ox2]));
                    }
                    cx++;
                }
                cy++;
                dst += dstOffset;
            }
        }
        else
        {
            float cy = -newYradius;
            for (int y = 0; y < outHeight; y++)
            {
                const     float     tx = angleSin * cy + oldXradius;
                const     float     ty = angleCos * cy + oldYradius;
    
                float cx = -newXradius;
                for (int x = 0; x < outWidth; x++, dst += Channels)
                {
                    // 初始起点位置
                    const     float ox = tx + angleCos * cx;
                    const     float oy = ty - angleSin * cx;
                    const int    ox1 = (int)ox;
                    const int    oy1 = (int)oy;
    
                    // 判断是否为有效区域 
                    if ((ox1 < 0) || (oy1 < 0) || (ox1 >= Width) || (oy1 >= Height))
                    {
                        // 无效区域填充背景 
                        dst[0] = fillR;
                        dst[1] = fillG;
                        dst[2] = fillB;
                    }
                    else
                    {
                        // 边界点处理 
                        const int    ox2 = (ox1 == lastWidth) ? ox1 : ox1 + 1;
                        const int    oy2 = (oy1 == lastHeight) ? oy1 : oy1 + 1;
                        float dx1 = ox - (float)ox1;
                        if (dx1 < 0)
                            dx1 = 0;
                        const    float dx2 = 1.0f - dx1;
                        float dy1 = oy - (float)oy1;
                        if (dy1 < 0)
                            dy1 = 0;
                        const    float    dy2 = 1.0f - dy1;
    
                        // 计算四点的坐标
                        unsigned char*    p1 = src + oy1 * Stride;
                        unsigned char*  p2 = p1;
                        p1 += ox1 * Channels;
                        p2 += ox2 * Channels;
    
                        unsigned char* p3 = src + oy2 * Stride;
                        unsigned char* p4 = p3;
                        p3 += ox1 * Channels;
                        p4 += ox2 * Channels;
    
                        // 进行四点插值
                        dst[0] = (unsigned char)(
                            dy2 * (dx2 * p1[0] + dx1 * p2[0]) +
                            dy1 * (dx2 * p3[0] + dx1 * p4[0]));
                        dst[1] = (unsigned char)(
                            dy2 * (dx2 * p1[1] + dx1 * p2[1]) +
                            dy1 * (dx2 * p3[1] + dx1 * p4[1]));
                        dst[2] = (unsigned char)(
                            dy2 * (dx2 * p1[2] + dx1 * p2[2]) +
                            dy1 * (dx2 * p3[2] + dx1 * p4[2]));
                    }
                    cx++;
                }
                cy++;
                dst += dstOffset;
            }
        }
    }
    
    bool CPUImageIsTextImage(unsigned char * Input, int Width, int Height)
    {
        const int blacklimit = 20;
        const int greylimit = 140;
        const int contrast_offset = 80;
    
        int prev_color[256];
        int cur_color[256];
    
        for (int i = 0; i < 256; i++)
        {
            cur_color[i] = 0;
            prev_color[i] = 0;
        }
    
        for (int i = 0; i <= blacklimit; i++)
        {
            //黑色
            cur_color[i] = 100;
            prev_color[i] = 100000;
        }
    
        for (int i = blacklimit + 1 + contrast_offset; i <= greylimit; i++)
        {
            //灰色
            cur_color[i] = 10;
            prev_color[i] = 10000;
        }
    
        for (int i = greylimit + 1 + contrast_offset; i <= 255; i++)
        {
            //白色
            cur_color[i] = 1;
            prev_color[i] = 1000;
        }
        int line_count = 0;
    
    
        int n = -1;
        for (int y = 0; y < Height; y += 10)
        {
            n++;
            int    white_amt = 0;
            unsigned char *  buffer = Input + y*Width;
            int x = 0;
            for (x = 1; x < Width; x++)
            {
                const unsigned char     prev_pixel = buffer[(x - 1)];
                const unsigned char     cur_pixel = buffer[x];
    
                if ((prev_color[prev_pixel]) && (cur_color[cur_pixel]))
                {
                    //是否是白色
                    if ((prev_color[prev_pixel] + cur_color[cur_pixel]) == 1001)
                    {
                        white_amt++;
                    }
                }
            }
            //白色的一行
            if (((float)white_amt / (float)x) > 0.85f)
            {
                line_count++;
            }
        }
    
        float line_count_ratio = (n != 0.f) ? (float)line_count / (float)n : 0.0f;
    
        if (line_count_ratio < 0.4f || line_count_ratio > 1.0f)
        {
            return false;
        }
    
        return true;
    }
    
    bool     CPUImageDocumentDeskew(unsigned char * Input, unsigned char *Output, int Width, int Height, int Stride)
    {
        if (Input == NULL || Output == NULL || Input == Output)
            return false;
        int Channels = Stride / Width;
        //最大倾斜角度 
        int maxSkewToDetect = 89;
    
        cpu_rect rect = { 0 };
        rect.Width = Width;
        rect.Height = Height;
        // 以最大权重的2条直线为基准计算倾斜角度
        int nLineCount = 2;
        //角度步进数
        int stepsPerDegree = 1;
        //局部临界半径
        int localPeakRadius = 10;
        CPUImageGrayscaleFilter(Input, Output, Width, Height, Stride);
        if (!CPUImageIsTextImage(Output, Width, Height))
        {
            CPUImageColorInvertFilter(Output, Output, Width, Height, Width);
        }
        float skewAngle = CPUImageCalcSkewAngle(Output, Width, Height, &rect, maxSkewToDetect, stepsPerDegree, localPeakRadius, nLineCount);
        if ((skewAngle == 0) || (skewAngle < -maxSkewToDetect || skewAngle >   maxSkewToDetect))
        {
            memcpy(Output, Input, Height* Stride * sizeof(unsigned char));
            return false;
        }
        else
        {
            CPUImageRotateBilinear(Input, Width, Height, Stride, Output, Width, Height, -skewAngle, true, 255, 255, 255);
        }
        return true;
    }
    
    
    //分割路径函数
    void splitpath(const char* path, char* drv, char* dir, char* name, char* ext)
    {
        const char* end;
        const char* p;
        const char* s;
        if (path[0] && path[1] == ':') {
            if (drv) {
                *drv++ = *path++;
                *drv++ = *path++;
                *drv = '';
            }
        }
        else if (drv)
            *drv = '';
        for (end = path; *end && *end != ':';)
            end++;
        for (p = end; p > path && *--p != '\' && *p != '/';)
            if (*p == '.') {
                end = p;
                break;
            }
        if (ext)
            for (s = end; (*ext = *s++);)
                ext++;
        for (p = end; p > path;)
            if (*--p == '\' || *p == '/') {
                p++;
                break;
            }
        if (name) {
            for (s = p; s < end;)
                *name++ = *s++;
            *name = '';
        }
        if (dir) {
            for (s = path; s < p;)
                *dir++ = *s++;
            *dir = '';
        }
    }
    
    //取当前传入的文件位置
    void getCurrentFilePath(const char *filePath, char *saveFile)
    {
        char drive[_MAX_DRIVE];
        char dir[_MAX_DIR];
        char fname[_MAX_FNAME];
        char ext[_MAX_EXT];
        splitpath(filePath, drive, dir, fname, ext);
        int n = strlen(filePath);
        memcpy(saveFile, filePath, n);
        char * cur_saveFile = saveFile + (n - strlen(ext));
        cur_saveFile[0] = '_';
        cur_saveFile[1] = 0;
    }
    
    int main(int argc, char **argv)
    {
        printf("Image Processing 
     ");
        printf("博客:http://cpuimage.cnblogs.com/ 
     ");
        printf("支持解析如下图片格式: 
     ");
        printf("JPG, PNG, TGA, BMP, PSD, GIF, HDR, PIC 
     ");
    
        //检查参数是否正确
    
        if (argc < 2)
        {
            printf("参数错误。 
     ");
            printf("请拖放文件到可执行文件上,或使用命令行:imageProc.exe 图片 
     ");
            printf("请拖放文件例如: imageProc.exe d:\image.jpg 
     ");
    
            return 0;
        }
    
        char*szfile = argv[1];
        //检查输入的文件是否存在
        if (_access(szfile, 0) == -1)
        {
            printf("输入的文件不存在,参数错误! 
     ");
        }
    
        getCurrentFilePath(szfile, saveFile);
    
        int Width = 0;                    //图片宽度
        int Height = 0;                   //图片高度
        int Channels = 0;                 //图片通道数
        unsigned char *inputImage = NULL; //输入图片指针
        double startTime = now();
        //加载图片
        inputImage = loadImage(szfile, &Width, &Height, &Channels);
    
        double nLoadTime = calcElapsed(startTime, now());
        printf("加载耗时: %d 毫秒!
     ", (int)(nLoadTime * 1000));
        if ((Channels != 0) && (Width != 0) && (Height != 0))
        {
            //分配与载入同等内存用于处理后输出结果
            unsigned char *outputImg = (unsigned char *)stbi__malloc(Width * Channels * Height * sizeof(unsigned char));
            if (inputImage)
            {
                //如果图片加载成功,则将内容复制给输出内存,方便处理
                memcpy(outputImg, inputImage, Width * Channels * Height);
            }
            else
            {
                printf("加载文件: %s 失败!
     ", szfile);
            }
            startTime = now();
            //处理算法
            CPUImageDocumentDeskew(inputImage, outputImg, Width, Height, Width*Channels);
            double nProcessTime = calcElapsed(startTime, now());
            printf("处理耗时: %d 毫秒!
     ", (int)(nProcessTime * 1000));
            //保存处理后的图片
            startTime = now();
    
            saveImage("_done.jpg", Width, Height, Channels, outputImg);
            double nSaveTime = calcElapsed(startTime, now());
    
            printf("保存耗时: %d 毫秒!
     ", (int)(nSaveTime * 1000));
            //释放占用的内存
            if (outputImg)
            {
                stbi_image_free(outputImg);
                outputImg = NULL;
            }
    
            if (inputImage)
            {
                stbi_image_free(inputImage);
                inputImage = NULL;
            }
        }
        else
        {
            printf("加载文件: %s 失败!
    ", szfile);
        }
    
        getchar();
        printf("按任意键退出程序 
    ");
    
        return EXIT_SUCCESS;
    }

    项目地址:https://github.com/cpuimage/deskew

    贴上几张效果图.

    以上,权当抛砖引玉。

    若有其他相关问题或者需求也可以邮件联系俺探讨。

    邮箱地址是: 
    gaozhihan@vip.qq.com

  • 相关阅读:
    某耳机厂商微信公众平台建设方案
    微信公众号订单好评红包返现系统
    LNMP的配置与优化
    微信公众号用户OpenID同步导出系统
    微信公众号无限定时群发系统
    小程序想要什么
    微信支付默认推荐关注规则
    微信小程序(应用号)资源汇总整理
    微信公众平台小程序开发教程
    微信应用号开发教程
  • 原文地址:https://www.cnblogs.com/cpuimage/p/8410049.html
Copyright © 2020-2023  润新知