• 窥探算法之美妙——寻找数组中最小的K个数&python中巧用最大堆


    原文发表在我的博客主页,转载请注明出处

    前言

    不论是小算法或者大系统,堆一直是某种场景下程序员比较亲睐的数据结构,而在python中,由于数据结构的极其灵活性,list,tuple, dict在很多情况下可以模拟其他数据结构,Queue库提供了栈和队列,甚至优先队列(和最小堆类似),heapq提供了最小堆,树,链表的指针在python中可以当作最普通的变量,所以python大法好。。。使用python确实可以把程序员从复杂的数据结构中解放开来,重点关注算法。好了言归正传。

    题目

    前几天看到了一个很经典的算法题目:输入n个整数,找出其中最小的k个数

    解决办法

    这道题目本身不是很难,而这篇博客更加侧重的是python中的最大堆的使用以及这道题目的解法汇总。

    一. 排序

    这个思路应该是最简单的,将整个数组排序,然后取出前k个数据就可以了,这个算法的时间复杂度为nlog(n),这里展示快速排序。代码如下:

    def partition(alist, start, end):
        if end <= start:
            return
        base = alist[start]
        index1, index2 = start, end
        while start < end:
            while start < end and alist[end] >= base:
                end -= 1
            alist[start] = alist[end]
            while start < end and alist[start] <= base:
                start += 1
            alist[end] = alist[start]
        alist[start] = base
        partition(alist, index1, start - 1)
        partition(alist, start + 1, index2)
    
    
    def find_least_k_nums(alist, k):
        length = len(alist)
        if not alist or k <=0 or k > length:
            return None
        start = 0
        end = length - 1
        partition(alist, start, end)
        return alist[:k]
    
    
    
    
    if __name__ == "__main__":
        l = [1, 9, 2, 4, 7, 6, 3]
        min_k = find_least_k_nums(l, 7)
        print min_k
    

    二. 快速排序的思想

    这种解法是在第一种解法上面的一种改进,快速排序的思想大家都已经知道,现在我们只需要最小的k个数,所以如果我们在某次快速排序中,选择的基准树的大小刚好是整个数组的第k小的数据,那么在这次排序完成之后,这个基准数之前的数据就是我们需要的(尽管他们并不是有序的),这个方法同样改变了数组,但是可以将时间复杂度压缩到O(n),话不多说,直接上代码:

    def partition(alist, start, end):
        if end <= start:
            return
        base = alist[start]
        index1, index2 = start, end
        while start < end:
            while start < end and alist[end] >= base:
                end -= 1
            alist[start] = alist[end]
            while start < end and alist[start] <= base:
                start += 1
            alist[end] = alist[start]
        alist[start] = base
        return start
    
    
    def find_least_k_nums(alist, k):
        length = len(alist)
        #if length == k:
        #    return alist
        if not alist or k <=0 or k > length:
            return
        start = 0
        end = length - 1
        index = partition(alist, start, end)
        while index != k:
            if index > k:
                index = partition(alist, start, index - 1)
            elif index < k:
                index = partition(alist, index + 1, end)
        return alist[:k]
    
    
    
    
    if __name__ == "__main__":
        l = [1, 9, 2, 4, 7, 6, 3]
        min_k = find_least_k_nums(l, 6)
        print min_k
    

    三. 最大堆

    上面方法虽然要改变数组的结构,在不要求数字顺序的情况下使用可以获得很好的时间复杂度,但是假如数字非常的多,一次性将其载入内存变得不可能或者内存消耗过大,那上面的方法就不再可行,我们可以创建一个大小为K的数据容器来存储最小的K个数,然后遍历整个数组,将每个数字和容器中的最大数进行比较,如果这个数大于容器中的最大值,则继续遍历,否则用这个数字替换掉容器中的最大值。这个方法的理解也十分简单,至于容器的选择,很多人第一反应便是最大堆,但是python中最大堆如何实现呢?我们可以借助实现了最小堆的heapq库,因为在一个数组中,每个数取反,则最大数变成了最小数,整个数字的顺序发生了变化,所以可以给数组的每个数字取反,然后借助最小堆,最后返回结果的时候再取反就可以了,代码如下:

    import heapq
    def get_least_numbers_big_data(self, alist, k):
        max_heap = []
        length = len(alist)
        if not alist or k <= 0 or k > length:
            return
        k = k - 1
        for ele in alist:
            ele = -ele
            if len(max_heap) <= k:
                heapq.heappush(max_heap, ele)
            else:
                heapq.heappushpop(max_heap, ele)
    
        return map(lambda x:-x, max_heap)
    
    
    if __name__ == "__main__":
        l = [1, 9, 2, 4, 7, 6, 3]
        min_k = get_least_numbers_big_data(l, 3)
    

    总结

    前面两种方法在数据量较小的时候如果允许改变数组结构可以使用,但是在大数据场景中,同时不改变数组结构,可以使用第三种方法。

  • 相关阅读:
    this与$(this)的区别
    子元素筛选选择器
    内容筛选选择器
    基本筛选选择器
    jQuery对象与DOM对象及互相转化
    【题解】保安站岗[P2458]皇宫看守[LOJ10157][SDOI2006]
    【学习笔记】薛定谔的喵咪Cat—球盒问题(全详解)
    【题解】二逼平衡树 [P3380] [BZOJ3196] [Tyvj1730]
    【题解】TES-Intelligence Test
    【题解】自行车比赛 [AHOI2016] [P2777]
  • 原文地址:https://www.cnblogs.com/cotyb/p/5205123.html
Copyright © 2020-2023  润新知