https://codeforces.com/contest/702/problem/F
考虑依次加入每个物品,假设它的代价是(x),那么会把剩余钱(in [x,+infty])的(-=x),答案++。
考虑分成三个区间来看:
([0,x-1],[x,2x-1],[2x,+infty))
第二个区间减了之后会和第一个区间合并,第三个区间相对顺序不变。
考虑直接暴力枚举二区间所有元素插入一区间,由势能分析(每次/2),得一共会做(O(n~log~n))次这样的操作。
平衡树随便维护维护即可。
当作非旋treap的练手题。
Code:
#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, _b = y; i <= _b; i ++)
#define ff(i, x, y) for(int i = x, _b = y; i < _b; i ++)
#define fd(i, x, y) for(int i = x, _b = y; i >= _b; i --)
#define ll long long
#define pp printf
#define hh pp("
")
using namespace std;
const int N = 2e5 + 5;
int n;
struct P {
int x, y;
} a[N];
int cmp(P a, P b) {
return a.y == b.y ? a.x < b.x : a.y > b.y;
}
ll s[N];
int k;
#define x0 t[x][0]
#define x1 t[x][1]
int t[N][2], c[2];
int b[N], lz1[N];
int ans[N], lz2[N];
int siz[N];
void jia1(int x, int v) {
if(x) b[x] += v, lz1[x] += v;
}
void jia2(int x, int v) {
if(x) ans[x] += v, lz2[x] += v;
}
void down(int x) {
if(lz1[x]) jia1(x0, lz1[x]), jia1(x1, lz1[x]), lz1[x] = 0;
if(lz2[x]) jia2(x0, lz2[x]), jia2(x1, lz2[x]), lz2[x] = 0;
}
void upd(int x) {
if(x) siz[x] = siz[x0] + siz[x1] + 1;
}
void split(int x, int k) {
c[0] = c[1] = 0; if(!x) return;
down(x);
int z = siz[x0] < k;
split(t[x][z], k - z * (siz[x0] + 1));
t[x][z] = c[!z]; c[!z] = x;
upd(x);
}
int mer(int x, int y) {
if(!x || !y) return x + y;
down(x); down(y);
if(rand() % (siz[x] + siz[y]) < siz[x]) {
t[x][1] = mer(t[x][1], y);
upd(x); return x;
} else {
t[y][0] = mer(x, t[y][0]);
upd(y); return y;
}
}
int cmpd(int x, int y) { return b[x] < b[y];}
int rt;
int ef(int x, int k) {
if(!x) return 0;
down(x);
if(b[x] <= k) return siz[x0] + 1 + ef(x1, k);
return ef(x0, k);
}
int d[N], d0;
void dg(int x) {
if(!x) return;
d[++ d0] = x;
down(x);
dg(x0); dg(x1);
}
void ins(int &rt, int x) {
int k = ef(rt, b[x]);
split(rt, k);
rt = mer(mer(c[0], x), c[1]);
}
//void dfs(int x) {
// if(!x) return;
// pp("%d %d %d
", x, x0, x1);
// dfs(x0); dfs(x1);
//}
void work(int x) {
int k1 = ef(rt, x - 1);
split(rt, k1);
int c0 = c[0];
int k2 = ef(c[1], 2 * x - 1);
split(c[1], k2);
int c1 = c[0], c2 = c[1];
jia1(c2, -x);
jia2(c2, 1);
jia1(c1, -x);
jia2(c1, 1);
d0 = 0;
dg(c1);
fo(i, 1, d0) {
t[d[i]][0] = t[d[i]][1] = 0;
siz[d[i]] = 1;
ins(c0, d[i]);
}
rt = mer(c0, c2);
}
int main() {
scanf("%d", &n);
fo(i, 1, n) scanf("%d %d", &a[i].x, &a[i].y);
sort(a + 1, a + n + 1, cmp);
scanf("%d", &k);
static int d[N];
fo(i, 1, k) {
scanf("%d", &b[i]);
d[i] = i;
siz[i] = 1;
}
sort(d + 1, d + k + 1, cmpd);
fo(i, 1, k) {
rt = mer(rt, d[i]);
}
fo(i, 1, n) {
work(a[i].x);
}
dg(rt);
fo(i, 1, k) pp("%d ", ans[i]);
}