这一类问题做多了现在看到都是秒。
(O(n^2))预处理(g[i])表示k轮后,第一个数恰好少了(i)的概率。
设(f[i])表示(i)的期望经过次数,那么(f[i]=[i=p]+sum_{j=i-1}^n f[j]*系数(j->i))。
这个系数可以用(g)来(O(1))算出,高斯消元后,(Ans=sum_{i=1}^n f[i])
根据树上随机游走那一套递推,我们从右往左做,可以一直得到(f[i]=k*f[i-1]+b)的形式
到(i=1)时,因为(f[0]=0),所以(f[1]=b),然后又从可以左往右推出(f[i])的值。
时间复杂度:(O(T*n^2))
Code
#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, _b = y; i <= _b; i ++)
#define ff(i, x, y) for(int i = x, _b = y; i < _b; i ++)
#define fd(i, x, y) for(int i = x, _b = y; i >= _b; i --)
#define ll long long
#define pp printf
#define hh pp("
")
using namespace std;
const int mo = 1e9 + 7;
ll ksm(ll x, ll y) {
ll s = 1;
for(; y; y /= 2, x = x * x % mo)
if(y & 1) s = s * x % mo;
return s;
}
const int N = 1505;
int T;
ll n, p, m, k;
ll m1;
ll g[N];
ll C(ll n, ll m) {
if(n < m) return 0;
ll s = 1;
fo(i, n - m + 1, n) s = s * i % mo;
ll v = 1;
fo(i, 1, m) v = v * i % mo;
return s * ksm(v, mo - 2) % mo;
}
ll calc(int i, int j) {
if(j <= 0) return 0;
ll s = 0;
ll v = j == n ? 1 : (m * m1 % mo);
if(i <= j) {
v = v * g[j - i] % mo;
s = v;
}
v = j == n ? 0 : m1;
if(v) {
v = v * g[j + 1 - i] % mo;
s = (s + v) % mo;
}
return s;
}
struct P {
ll x, y;
P(ll _x = 0, ll _y = 0) {
x = _x, y = _y;
}
};
P operator * (P a, P b) {
return P(a.x * b.x % mo, (a.y + b.y * a.x) % mo);
}
P operator * (P a, ll b) {
return P(a.x * b % mo, a.y * b % mo);
}
P f[N];
ll s[N];
void work() {
scanf("%lld %lld %lld %lld", &n, &p, &m, &k);
if(k == 0) {
pp("-1
"); return;
}
if(m == 0 && k == 1 && n > 1) {
pp("-1
"); return;
}
m1 = ksm(m + 1, mo - 2);
fo(i, 0, n) {
g[i] = C(k, i) * ksm(m1, i) % mo * ksm(m1 * m % mo, k - i) % mo;
}
fd(i, n, 1) {
ll a0 = 1, b0 = 0;
a0 = (a0 - calc(i, i)) % mo;
P c = P(1, 0);
fo(j, i + 1, n) {
c = f[j] * c;
P d = c * calc(i, j);
a0 = (a0 - d.x) % mo;
b0 = (b0 + d.y) % mo;
}
if(i == p) b0 ++;
f[i] = P(calc(i, i - 1), b0) * ksm(a0, mo - 2);
}
ll ans = 0;
fo(i, 1, n) {
s[i] = (s[i - 1] * f[i].x + f[i].y) % mo;
ans = (ans + s[i]) % mo;
}
ans = (ans % mo + mo) % mo;
pp("%lld
", ans);
}
int main() {
scanf("%d", &T);
fo(ii, 1, T) {
work();
}
}