• 题解 P4301 【[CQOI2013]新Nim游戏】


    题目链接

    Solution [CQOI2013]新Nim游戏

    题目大意:给定(n)堆石子,两个人可以各取走任意堆石子,但不能取完,可以不取。接下来和(Nim)游戏规则一样,询问是否有先手必胜策略

    博弈论,线性基,贪心


    分析:

    首先明确先手必胜,证明:

    假设有(n)堆,先手取(n-1)堆,第二个人因为不能取完只能不取,只剩一堆石子显然(Nim)和大于(0),因此先手必胜

    再来看如何求解,假如先手取几堆石子后,第二个人想要获胜,操作后剩下石子的(Nim)和就必须为(0)

    于是问题转化如下

    先手取若干堆石子,使得剩下石子数不存在一个子集使得石子数量异或和为(0),换句话说,剩下的石头数在异或意义下是线性无关的

    求第一次取的石头数可以反过来,求剩下的石子数,要使第一次取的石头数尽量少,剩下的石头权值和就要尽量大。也就是说,我们要求权值和最大的线性无关子集

    考虑贪心,将石子数从大到小排序,依次插入线性基,插入失败说明选了该堆石子就构成了线性相关子集,必须第一次取掉它

    因为异或是不进位意义下的加法,所以第一次取该堆石子一定比取和它线性相关的那多堆石子要优秀,其实就是[BJWC2011]元素这题

    5 min淦紫题,弦形袋鼠真有意思

    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    using namespace std;
    inline int read(){
    	int x = 0;char c = getchar();
    	while(!isdigit(c))c = getchar();
    	while(isdigit(c))x = x * 10 + c - '0',c = getchar();
    	return x;
    }
    int n,val[128],base[32];
    long long ans;
    inline bool insert(int x){
    	for(int i = 30;i >= 0;i--){
    		if(!(x >> i))continue;
    		if(!base[i]){
    			base[i] = x;
    			return true;
    		}
    		x ^= base[i];
    	}
    	return false;
    }
    int main(){
    	n = read();
    	for(int i = 1;i <= n;i++)val[i] = read();
    	sort(val + 1,val + 1 + n,[](int a,int b){return a > b;});
    	for(int i = 1;i <= n;i++)
    		if(!insert(val[i]))ans += val[i];
    	printf("%lld
    ",ans);
    	return 0;
    }
    
  • 相关阅读:
    git介绍
    Oracle '26-2月 -19 03.34.47.000000 下午' 字符串日期解析
    ProceedingJoinPoint 某些方法记录一下
    SpringBoot 2.X以上集成redis
    SpringBoot文件上传配置
    editmd输出到前端显示
    Thymeleaf Shiro标签
    Springboot 添加druid监控
    基于SpringBoot的博客项目
    SpringBoot默认首页配置
  • 原文地址:https://www.cnblogs.com/colazcy/p/11734576.html
Copyright © 2020-2023  润新知