• [LeetCode] Largest Rectangle in Histogram 解题报告



    Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
    Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].
    The largest rectangle is shown in the shaded area, which has area = 10 unit.
    For example,
    Given height = [2,1,5,6,2,3],
    return 10.
    » Solve this problem

    [解题思路]
    对于每一个height,遍历前面所有的height,求取面积最大值。时间复杂度是O(n*n)

    [Code]
    1:  int largestRectangleArea(vector<int> &height) {  
    2: // Start typing your C/C++ solution below
    3: // DO NOT write int main() function
    4: //int result[height.size()];
    5: int maxV = 0;
    6: for(int i =0; i< height.size(); i++)
    7: {
    8: int minV = height[i];
    9: for(int j =i; j>=0; j--)
    10: {
    11: minV = std::min(minV, height[j]);
    12: int area = minV*(i-j+1);
    13: if(area > maxV)
    14: maxV = area;
    15: }
    16: }
    17: return maxV;
    18: }

    可以过小数据,但是大数据超时。可以理解,这个解法包含了很多重复计算。一个简单的改进,是只对合适的右边界(峰顶),往左遍历面积。

    1:  int largestRectangleArea(vector<int> &height) {   
    2: int maxV = 0;
    3: for(int i =0; i< height.size(); i++)
    4: {
    5: if(i+1 < height.size()
    6: && height[i] <= height[i+1]) // if not peak node, skip it
    7: continue;
    8: int minV = height[i];
    9: for(int j =i; j>=0; j--)
    10: {
    11: minV = std::min(minV, height[j]);
    12: int area = minV*(i-j+1);
    13: if(area > maxV)
    14: maxV = area;
    15: }
    16: }
    17: return maxV;
    18: }

    这样的话,就可以通过大数据。但是这个优化只是比较有效的剪枝,算法仍然是O(n*n).

    想了半天,也想不出来O(n)的解法,于是上网google了一下。
    如下图所示,从左到右处理直方,i=4时,小于当前栈顶(及直方3),于是在统计完区间[2,3]的最大值以后,消除掉阴影部分,然后把红线部分作为一个大直方插入。因为,无论后面还是前面的直方,都不可能得到比目前栈顶元素更高的高度了。


    这就意味着,可以维护一个递增的栈,每次比较栈顶与当前元素。如果当前元素小于栈顶元素,则入站,否则合并现有栈,直至栈顶元素小于当前元素。结尾入站元素0,重复合并一次。

    思路很巧妙。代码实现如下, 大数据 76ms过。
    1:     int largestRectangleArea(vector<int> &height) {  
    2: // Start typing your C/C++ solution below
    3: // DO NOT write int main() function
    4: int stack[height.size()+1], width[height.size()+1];
    5: if(height.size() == 0) return 0;
    6: int top = 0, area = INT_MIN;
    7: stack[0] = 0;
    8: width[0] = 0;
    9: int newHeight;
    10: for(int i =0; i<= height.size(); i++)
    11: {
    12: if(i < height.size()) newHeight = height[i];
    13: else newHeight = -1;
    14: if(newHeight>= stack[top])
    15: {
    16: stack[++top] = newHeight;
    17: width[top] = 1;
    18: }
    19: else
    20: {
    21: int minV = INT_MAX;
    22: int wid= 0;
    23: while(stack[top] > newHeight)
    24: {
    25: minV = min(minV, stack[top]);
    26: wid += width[top];
    27: area = max(area, minV*(wid));
    28: top--;
    29: }
    30: stack[++top] = newHeight;
    31: width[top] = wid+1;
    32: }
    33: }
    34: return area;
    35: }

    [总结]
    这道题蛮有意思。引入stack的做法相当巧妙。

    Update: Refactor code 5/7/2013
    评论中Zhongwen Ying的code写的比我post的code简洁多了。把他的code format一下集成进来。

    1:  int largestRectangleArea(vector<int> &h) {  
    2: stack<int> S;
    3: h.push_back(0);
    4: int sum = 0;
    5: for (int i = 0; i < h.size(); i++) {
    6: if (S.empty() || h[i] > h[S.top()]) S.push(i);
    7: else {
    8: int tmp = S.top();
    9: S.pop();
    10: sum = max(sum, h[tmp]*(S.empty()? i : i-S.top()-1));
    11: i--;
    12: }
    13: }
    14: return sum;
    15: }


  • 相关阅读:
    Java switch 枚举
    (八十七)AutoLayout的简单介绍与实例
    ptime概述
    如何让大数据从发现价值到创造价值
    什么是数据分析?数据分析的6个关键步骤!
    什么是数据分析?数据分析的6个关键步骤!
    数据分析方法汇总(2)
    数据分析方法汇总(2)
    数据分析方法汇总(1)
    人工智能能力提升指导总结
  • 原文地址:https://www.cnblogs.com/codingtmd/p/5078998.html
Copyright © 2020-2023  润新知