python——生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
>>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x1022ef630>
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()
函数获得generator的下一个返回值:
>>> next(g) 0 >>> next(g) 1 >>> next(g) 4 >>> next(g) 9 >>> next(g) 16 >>> next(g) 25 >>> next(g) 36 >>> next(g) 49 >>> next(g) 64 >>> next(g) 81 >>> next(g) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
我们讲过,generator保存的是算法,每次调用next(g)
,就计算出g
的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration
的错误。
当然,上面这种不断调用next(g)
实在是太变态了,正确的方法是使用for
循环,因为generator也是可迭代对象:
>>> g = (x * x for x in range(10)) >>> for n in g: ... print(n) ... 0 1 4 9 16 25 36 49 64 81
所以,我们创建了一个generator后,基本上永远不会调用next()
,而是通过for
循环来迭代它,并且不需要关心StopIteration
的错误。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for
循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return 'done'
注意,赋值语句:
a, b = b, a + b
相当于:
t = (b, a + b) # t是一个tuple a = t[0] b = t[1]
但不必显式写出临时变量t就可以赋值。
上面的函数可以输出斐波那契数列的前N个数:
>>> fib(6) 1 1 2 3 5 8 'done'
仔细观察,可以看出,fib
函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib
函数变成generator,只需要把print(b)
改为yield b
就可以了:
def fib(max): n, a, b = 0, 0, 1 while n < max: yield b a, b = b, a + b n = n + 1 return 'done'
这就是定义generator的另一种方法。如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator:
>>> f = fib(6) >>> f <generator object fib at 0x104feaaa0>
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时(即调用next()时)从上次返回的yield
语句处继续执行。
举个简单的例子,定义一个generator,依次返回数字1,3,5:
def odd(): print('step 1') yield 1 print('step 2') yield(3) print('step 3') yield(5)
调用该generator时,首先要生成一个generator对象,然后用next()
函数不断获得下一个返回值:
>>> o = odd() >>> next(o) step 1 1 >>> next(o) step 2 3 >>> next(o) step 3 5 >>> next(o) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
可以看到,odd
不是普通函数,而是generator,在执行过程中,遇到yield
就中断,下次又继续执行。执行3次yield
后,已经没有yield
可以执行了,所以,第4次调用next(o)
就报错。
回到fib
的例子,我们在循环过程中不断调用yield
,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator后,我们基本上从来不会用next()
来获取下一个返回值,而是直接使用for
循环来迭代:
>>> for n in fib(6): ... print(n) ... 1 1 2 3 5 8
但是用for
循环调用generator时,发现拿不到generator的return
语句的返回值。如果想要拿到返回值,必须捕获StopIteration
错误,返回值包含在StopIteration
的value
中:
>>> g = fib(6) >>> while True: ... try: ... x = next(g) ... print('g:', x) ... except StopIteration as e: ... print('Generator return value:', e.value) ... break ... g: 1 g: 1 g: 2 g: 3 g: 5 g: 8 Generator return value: done
关于如何捕获错误,后面的错误处理还会详细讲解。
练习
杨辉三角定义如下:
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1
把每一行看做一个list,试写一个generator,不断输出下一行的list:
代码:
1 #练习: 2 #生成杨辉三角 3 4 ''' 5 6 1 7 1 1 8 1 2 1 9 1 3 3 1 10 1 4 6 4 1 11 1 5 10 10 5 1 12 ''' 13 #方法1 14 print('Method1: ') 15 def YH_Triangles1(): 16 lst=[1] #第一行为1 17 while 1: 18 yield lst 19 lst.append(0) #先占位,然后修改相应位置上的竖直 20 lst=[lst[i-1] + lst[i] for i in range(len(lst))] #i从0开始,lst[-1]表示去lst最后一个元素 21 22 g=YH_Triangles1() 23 for n in range(10): #range(10)代表从0到10(不包括10) 24 print(next(g)) 25 26 print('------------------------------------------') 27 28 #方法2 29 print('Method2: ') 30 def YH_Triangles2(): 31 lst=[1] 32 while 1: 33 yield lst 34 lst.append(1) 35 tmp=lst[:] #只复制数值,不指向同一个对象 36 length=len(lst) #获取lst的长度 37 if length >2: #长度大于2时,说明从第三行才开始满足条件进行for循环 38 for i in range(1,length-1): #range(1,lengh-1)表示从1到lengh-1(不包括lengh-1) 39 tmp[i]=lst[i-1]+lst[i] 40 lst=tmp[:] 41 42 n=0 43 for t in YH_Triangles2(): 44 print(t) 45 n+=1 46 if n==10: 47 break 48 49 print('------------------------------------------') 50 51 #方法3 52 #------------------------------------------------------------------------------------------ 53 #拿第三行来举例 54 #将已有行(此处为第二行)进行补0错位[1,1]-->[0,1,1]和[1,1,0]然后相加即可得到新一行。 55 #这是在数学上使用技巧,可以简化代码。 56 #------------------------------------------------------------------------------------------ 57 print('Method3: ') 58 def YH_Triangles3(): 59 lst=[1] 60 while 1: 61 yield lst 62 lst=[sum(i) for i in zip([0]+ lst,lst+[0])] 63 64 ''' 65 zip([seql, ...])接受一系列可迭代对象作为参数, 66 将对象中对应的元素打包成一个个tuple(元组), 67 然后返回由这些tuples组成的list(列表)。 68 若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同 69 eg: 70 >>> z1=[1,2,3] 71 >>> z2=[4,5,6] 72 >>> result=zip(z1,z2) 73 >>> result 74 >>>[(1, 4), (2, 5), (3, 6)] 75 ''' 76 g=YH_Triangles3() 77 for n in range(10): #range(10)代表从0到10(不包括10) 78 print(next(g)) 79 80 print('------------------------------------------') 81 print('--------------------END-------------------')
运行结果:
小结
generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。
要理解generator的工作原理,它是在for
循环的过程中不断计算出下一个元素,并在适当的条件结束for
循环。对于函数改成的generator来说,遇到return
语句或者执行到函数体最后一行语句,就是结束generator的指令,for
循环随之结束。
请注意区分普通函数和generator函数,普通函数调用直接返回结果:
>>> r = abs(6) >>> r 6
generator函数的“调用”实际返回一个generator对象:
>>> g = fib(6) >>> g <generator object fib at 0x1022ef948>