• 二叉树的三种遍历(java实现)


    前言

    nowcoder题目:https://www.nowcoder.com/practice/566f7f9d68c24691aa5abd8abefa798c?tpId=101&rp=1&ru=%2Fta%2Fprogrammer-code-interview-guide&qru=%2Fta%2Fprogrammer-code-interview-guide%2Fquestion-ranking

     常规递归和非递归方法

    import java.io.*;
    import java.util.Stack;
    
    public class Main {
        public static void main(String[] args) throws IOException {
            BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
            br.readLine();
            TreeNode root = buildTree(br);
            
            // 前序遍历
            //preOrderTraversalRecur(root);
            preOrderTraversal(root);
            System.out.println("");
            
            // 中序遍历
            //inOrderTraversalRecur(root);
            inOrderTraversal(root);
            System.out.println("");
            
            // 后序遍历
            //postOrderTraversalRecur(root);
            postOrderTraversal2(root);
            System.out.println("");
            
            br.close();
        }
        
        // 递归解法
        private static void preOrderTraversalRecur(TreeNode root) {
            if (null == root) {
                return;
            }
            System.out.print(root.val + " ");
            preOrderTraversalRecur(root.left);
            preOrderTraversalRecur(root.right);
        }
        
        // 非递归前序遍历解法, 根左右
        private static void preOrderTraversal(TreeNode root) {
            if (null == root) {
                return ;
            }
            Stack<TreeNode> stack = new Stack<>();
            TreeNode cur = root, last = root; // 记录上次遍历的 节点
            stack.push(cur);
            while (!stack.isEmpty()) {
                cur = stack.pop();
                System.out.print(cur.val + " ");
                if (null != cur.right) {
                    stack.push(cur.right);
                } 
                if (null != cur.left) {
                    stack.push(cur.left);
                }
            }
            return;
        }
        
        private static void inOrderTraversalRecur(TreeNode root) {
            if (null == root) {
                return;
            }
            preOrderTraversalRecur(root.left);
            System.out.print(root.val + " ");
            preOrderTraversalRecur(root.right);
        }
        
        // 非递归中序遍历解法, 用栈实现, 左根右
        private static void inOrderTraversal(TreeNode root) {
            if (null == root) {
                return;
            }
            Stack<TreeNode> stack = new Stack<>();
            TreeNode cur = root;
            while (!stack.isEmpty() || null != cur) {
                while (null != cur) {
                    stack.push(cur);
                    cur = cur.left;
                }
                cur = stack.pop();
                System.out.print(cur.val + " ");
                cur = cur.right;
            }
            return ;
        }
        
        private static void postOrderTraversalRecur(TreeNode root) {
            if (null == root) {
                return;
            }
            preOrderTraversalRecur(root.left);
            preOrderTraversalRecur(root.right);
            System.out.print(root.val + " ");
        }
        
        // 非递归后序遍历解法,左右根,参考左的书籍
        // 用一个栈实现的版本
        private static void postOrderTraversal(TreeNode root) {
            Stack<TreeNode> stack = new Stack<>();
            TreeNode cur = root, last = root; // last记录上次遍历并弹出的节点
            stack.push(cur);
            while (!stack.isEmpty()) {
                cur = stack.peek();
                // 左子树为空,且不等于访问过的节点
                if (null != cur.left && last != cur.left && last != cur.right) {
                    stack.push(cur.left);
                } else if (null != cur.right && last != cur.right) {
                    stack.push(cur.right);
                } else {
                    System.out.print(stack.pop().val + " ");
                    last = cur;
                }
            }
            return;
        }
        
        private static void postOrderTraversal2(TreeNode root) {
            if (null == root) {
                return;
            }
            Stack<TreeNode> s1 = new Stack<>();
            Stack<TreeNode> s2 = new Stack<>();
            TreeNode cur = root;
            s1.push(cur);
            while (!s1.isEmpty()) {
                cur = s1.pop();
                s2.push(cur);
                if (null != cur.left) {
                    s1.push(cur.left);
                }
                if (null != cur.right) {
                    s1.push(cur.right);
                }
            }
            while (!s2.isEmpty()) {
                System.out.print(s2.pop().val + " ");
            }
            return;
        }
        
        
        
        
        // 递归构建二叉树
        private static TreeNode buildTree(BufferedReader br) throws IOException {
            String[] rawInput = br.readLine().trim().split(" ");
            TreeNode root = new TreeNode(Integer.parseInt(rawInput[0]));
            
            int iLeft = Integer.parseInt(rawInput[1]);
            int iRight = Integer.parseInt(rawInput[2]);
            if (0 != iLeft) {
                root.left = buildTree(br);
            }
            
            if (0 != iRight) {
                root.right = buildTree(br);
            }
            
            return root;
        }
    }
    
    class TreeNode {
        int val;
        TreeNode left;
        TreeNode right;
        public TreeNode(int value) {
            this.val = value;
        }
        public TreeNode(int value, TreeNode left, TreeNode right) {
            this.val = value;
            this.left = left;
            this.right = right;
        }
    }

    Morris遍历

    import java.io.*;
    import java.util.*;
    
    public class Main {
        public static void main(String[] args) throws IOException {
            BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
            br.readLine();
            
            TreeNode root = createTreeNode(br);
            
            
            preOrderMorris(root);
            inOrderMorris(root);
            postOrderMorris(root);
            
            br.close();
        }
        
        /**
         * Morris 遍历算法整体步骤如下(假设当前遍历到的节点为 xx):
    
         * 如果 xx 无左孩子,则访问 xx 的右孩子,即 x = x.right。
         * 如果 xx 有左孩子,则找到 xx 左子树上最右的节点(即左子树中序遍历的最后一个节点,xx 在中序遍历中的前驱节点),我们记为predecessor。根据predecessor 的右孩子是否为空,进行如下操作。
         *     如果 predecessor 的右孩子为空,则将其右孩子指向 xx,然后访问 xx 的左孩子,即 x = x.left。
         *     如果 predecessor 的右孩子不为空,则此时其右孩子指向 xx,说明我们已经遍历完 xx 的左子树,我们将predecessor 的右孩子置空,
               然后访问 xx 的右孩子,即 x = x.right。
    
         * 作者:LeetCode-Solution
         * 链接:https://leetcode-cn.com/problems/recover-binary-search-tree/solution/hui-fu-er-cha-sou-suo-shu-by-leetcode-solution/
         * 来源:力扣(LeetCode)
         * 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
        **/
        
        // 先序遍历 Morris遍历 莫里斯遍历
        private static void preOrderMorris(TreeNode root) {
            if (null == root) {
                return;
            }
            TreeNode cur = root, predecessor = null;
            while (null != cur) {
                predecessor = cur.left;
                if (null != predecessor) {
                    while (null != predecessor.right && cur != predecessor.right) {
                        predecessor = predecessor.right;
                    }
                    
                    if (null == predecessor.right) {
                        predecessor.right = cur;
                        System.out.print(cur.val + " ");
                        cur = cur.left;
                        continue;
                    } else {
                        predecessor.right = null;
                    }
                } else {
                    System.out.print(cur.val + " ");
                }
                cur = cur.right;
            }
            System.out.println();
        }
        
        // 中序遍历 morris遍历, 复用空指针指向上层某个节点
        // 这里为左子树最右结点指向根结点
        private static void inOrderMorris(TreeNode root) {
            if (null == root) {
                return;
            }
            TreeNode cur = root, predecessor = null;
            while (null != cur) {
                predecessor = cur.left;
                if (null != predecessor) {
                    // 获取左子树上的最右结点
                    while (null != predecessor.right && cur != predecessor.right) {
                        predecessor = predecessor.right;
                    }
                    
                    if (null == predecessor.right) {
                        // 左子树上的最右结点 指向当前结点
                        predecessor.right = cur;
                        cur = cur.left;
                        continue; // 注意这里的continue;
                    } else {
                        // 复原空指针
                        predecessor.right = null;
                    }
                }
                System.out.print(cur.val + " ");
                cur = cur.right;
            }
            System.out.println();
            return;
        }
        
        // 后序遍历 morris遍历
        private static void postOrderMorris(TreeNode root) {
            if (null == root) {
                return;
            }
            TreeNode cur = root, prodecessor = null;
            while (null != cur) {
                prodecessor = cur.left;
                if (null != prodecessor) {
                    while (null != prodecessor.right && cur != prodecessor.right) {
                        prodecessor = prodecessor.right;
                    }
                    
                    if (null == prodecessor.right) {
                        prodecessor.right = cur;
                        cur = cur.left;
                        continue; // 这里的continue;
                    } else {
                        prodecessor.right = null;
                        printEdge(cur.left);
                    }
                }
                cur = cur.right;
            }
            printEdge(root);
            System.out.println();
        }
        
        private static void printEdge(TreeNode root) {
            // 逆序右边界
            TreeNode tail = reverseEdge(root);
            TreeNode cur = tail;
            while (null != cur) {
                System.out.print(cur.val + " ");
                cur = cur.right;
            }
            reverseEdge(tail);
        }
        
        private static TreeNode reverseEdge(TreeNode from) {
            TreeNode next = null, pre = null;
            while (null != from) {
                next = from.right;
                from.right = pre;
                pre = from;
                from = next;
            }
            return pre;
        }
        
        private static TreeNode createTreeNode(BufferedReader br) throws IOException {
            String[] rawInput = br.readLine().trim().split(" ");
            int rootVal = Integer.parseInt(rawInput[0]);
            int leftVal = Integer.parseInt(rawInput[1]);
            int rightVal = Integer.parseInt(rawInput[2]);
            
            TreeNode root = new TreeNode(rootVal);
            if (0 != leftVal) {
                root.left = createTreeNode(br);
            }
            
            if (0 != rightVal) {
                root.right = createTreeNode(br);
            }
            return root;
        }
    }
    
    class TreeNode {
        int val;
        TreeNode left;
        TreeNode right;
        public TreeNode(int val) {
            this.val = val;
        }
        public TreeNode(int val, TreeNode left, TreeNode right) {
            this.val = val;
            this.left = left;
            this.right = right;
        }
    }
    只为训练自己,时刻锤炼一个程序员最基本的技能!
  • 相关阅读:
    PYSpark DataFrame
    wheel用户组
    CURD是什么?
    mysql binlog日志清理
    skype的图片默认保存路径
    bootstrap使用总结
    库表批量新增id字段
    谷粒商城-问题汇总
    开发工具问题汇总
    feign客户端,参数无法传递复杂对象
  • 原文地址:https://www.cnblogs.com/coding-wtf/p/13587512.html
Copyright © 2020-2023  润新知