• POJ 1523 无向图的割点


    SPF
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 6653   Accepted: 3037

    Description

    Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the still available nodes from communicating with each other. Nodes 1 and 2 could still communicate with each other as could nodes 4 and 5, but communication between any other pairs of nodes would no longer be possible. 

    Node 3 is therefore a Single Point of Failure (SPF) for this network. Strictly, an SPF will be defined as any node that, if unavailable, would prevent at least one pair of available nodes from being able to communicate on what was previously a fully connected network. Note that the network on the right has no such node; there is no SPF in the network. At least two machines must fail before there are any pairs of available nodes which cannot communicate. 

    Input

    The input will contain the description of several networks. A network description will consist of pairs of integers, one pair per line, that identify connected nodes. Ordering of the pairs is irrelevant; 1 2 and 2 1 specify the same connection. All node numbers will range from 1 to 1000. A line containing a single zero ends the list of connected nodes. An empty network description flags the end of the input. Blank lines in the input file should be ignored.

    Output

    For each network in the input, you will output its number in the file, followed by a list of any SPF nodes that exist. 

    The first network in the file should be identified as "Network #1", the second as "Network #2", etc. For each SPF node, output a line, formatted as shown in the examples below, that identifies the node and the number of fully connected subnets that remain when that node fails. If the network has no SPF nodes, simply output the text "No SPF nodes" instead of a list of SPF nodes.

    Sample Input

    1 2
    5 4
    3 1
    3 2
    3 4
    3 5
    0
    
    1 2
    2 3
    3 4
    4 5
    5 1
    0
    
    1 2
    2 3
    3 4
    4 6
    6 3
    2 5
    5 1
    0
    
    0

    Sample Output

    Network #1
      SPF node 3 leaves 2 subnets
    
    Network #2
      No SPF nodes
    
    Network #3
      SPF node 2 leaves 2 subnets
      SPF node 3 leaves 2 subnets

    Source

    题意:找出每个割点,然后求出删除这个割点所得的连通分量个数;
    注意:输出格式;
     1 #include<iostream>
     2 #include<algorithm>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<cstdlib>
     6 #include<vector>
     7 #include<map>
     8 using namespace std;
     9 const int maxn=1007;
    10 vector<int> G[maxn];
    11 int pre[maxn],ans,root,sum,cnt[maxn];
    12 bool isroot[maxn];
    13 int tarjan(int u,int fa)
    14 {
    15     int lowu=pre[u]=sum++;
    16     int l=G[u].size();
    17     int child=0;
    18     for(int i=0;i<l;i++)
    19     {
    20         int v=G[u][i];
    21         if(!pre[v]){
    22             child++;
    23             int lowv=tarjan(v,u);
    24             lowu=min(lowv,lowu);
    25             if(u==root&&child>1||u!=root&&pre[u]<=lowv){
    26                 cnt[u]++;
    27             }
    28         }
    29         else if(v!=fa) lowu=min(lowu,pre[v]);
    30     }
    31     return lowu;
    32 }
    33 int main()
    34 {
    35     int a,b,tt=1;
    36     bool first=0;
    37     while(1){
    38         if(first) printf("
    ");
    39         else first=1;
    40         for(int i=0;i<maxn;i++) G[i].clear();
    41         scanf("%d",&a);
    42         if(a==0) break;
    43         scanf("%d",&b);
    44         G[a].push_back(b);G[b].push_back(a);
    45         while(1){
    46             scanf("%d",&a);
    47             if(a==0) break;
    48             scanf("%d",&b);
    49             G[a].push_back(b);G[b].push_back(a);
    50         }
    51        memset(pre,0,sizeof(pre));
    52        memset(cnt,0,sizeof(cnt));
    53        memset(isroot,0,sizeof(isroot));
    54        for(int i=1;i<=1000;i++)
    55        {
    56            if(!pre[i]&&G[i].size()>0){
    57               root=i;
    58               isroot[i]=1;
    59               sum=1;
    60               tarjan(i,-1);
    61            }
    62        }
    63        printf("Network #%d
    ",tt++);
    64        bool flag=0;
    65        for(int i=1;i<=maxn;i++)
    66        {
    67            if(cnt[i]&&isroot[i]) {flag=1;printf("  SPF node %d leaves %d subnets
    ",i,cnt[i]+1);}
    68            else if(cnt[i]&&!isroot[i]) {flag=1;printf("  SPF node %d leaves %d subnets
    ",i,cnt[i]+1);}
    69        }
    70        if(!flag) printf("  No SPF nodes
    ");
    71     }
    72     return 0;
    73 }
     
  • 相关阅读:
    让弹幕给 PPD 生个孩子
    circle_clock 简单canvas实现圆弧时钟
    JS练习实例--编写经典小游戏俄罗斯方块
    就这样,我把4000张美女和帅哥照片下载本地了
    移动端开发的兼容问题(自我总结篇)
    css两栏布局、圣杯布局、双飞翼布局
    浅析Node与Element
    那是我在夕阳下的code
    flex布局中父容器属性部分演示效果
    关于CDN那些事
  • 原文地址:https://www.cnblogs.com/codeyuan/p/4385877.html
Copyright © 2020-2023  润新知