• 算法笔记 上机训练实战指南 第8章 提高篇(2)--搜索专题 学习笔记


    8.1 深度优先搜索(DFS)

    PAT A1103 Integer Factorization (30分)

    The KP factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the KP factorization of N for any positive integers N, K and P.

    Input Specification:

    Each input file contains one test case which gives in a line the three positive integers N (≤), K (≤) and P (1). The numbers in a line are separated by a space.

    Output Specification:

    For each case, if the solution exists, output in the format:

    N = n[1]^P + ... n[K]^P

    where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.

    Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 1, or 1, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { , } is said to be larger than { , } if there exists 1 such that ai​​=bi​​ for i<L and aL​​>bL​​.

    If there is no solution, simple output Impossible.

    Sample Input 1:

    169 5 2

    Sample Output 1:

    169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2

    Sample Input 2:

    169 167 3

    Sample Output 2:

    Impossible
    #include<cstdio>
    #include<vector>
    using namespace std;
    int n,k,p,maxfacSum = - 1;
    vector<int> temp,ans,fac;
    int power(int x){
        int ans = 1;
        for(int i = 0; i < p;i++){
            ans *= x;
        }
        return ans;
    }
    void init(){
        int temp = 0,i = 0;
        while(temp <= n){
            fac.push_back(temp);
            temp = power(++i);
        }
    }
    void DFS(int index,int nowK,int sum,int facSum){
        if(nowK == k && sum == n){
            if(facSum > maxfacSum){
                ans = temp;
                maxfacSum = facSum;
            }
            return;
        }
        if(nowK > k || sum > n)
            return;
        if(index-1 >= 0){
            temp.push_back(index);
            DFS(index,nowK+1,sum+fac[index],facSum+index);
            temp.pop_back();
            DFS(index-1,nowK,sum,facSum);
        }
    }
    int main(){
        scanf("%d%d%d",&n,&k,&p);
        init();
        DFS(fac.size()-1,0,0,0);
        if(maxfacSum == -1){
            printf("Impossible
    ");
        }else{
            printf("%d = %d^%d",n,ans[0],p);
            for(int i =1;i<ans.size();i++){
                printf(" + %d^%d",ans[i],p);
            }
        }
        return 0;
    }

     8.2 广度优先搜索(BFS)

    PAT A1091 Acute Stroke (30分)

    One important factor to identify acute stroke (急性脑卒中) is the volume of the stroke core. Given the results of image analysis in which the core regions are identified in each MRI slice, your job is to calculate the volume of the stroke core.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 4 positive integers: M, N, L and T, where M and N are the sizes of each slice (i.e. pixels of a slice are in an M×N matrix, and the maximum resolution is 1286 by 128); L (≤) is the number of slices of a brain; and T is the integer threshold (i.e. if the volume of a connected core is less than T, then that core must not be counted).

    Then L slices are given. Each slice is represented by an M×N matrix of 0's and 1's, where 1 represents a pixel of stroke, and 0 means normal. Since the thickness of a slice is a constant, we only have to count the number of 1's to obtain the volume. However, there might be several separated core regions in a brain, and only those with their volumes no less than T are counted. Two pixels are connected and hence belong to the same region if they share a common side, as shown by Figure 1 where all the 6 red pixels are connected to the blue one.

    figstroke.jpg

    Figure 1

    Output Specification:

    For each case, output in a line the total volume of the stroke core.

    Sample Input:

    3 4 5 2
    1 1 1 1
    1 1 1 1
    1 1 1 1
    0 0 1 1
    0 0 1 1
    0 0 1 1
    1 0 1 1
    0 1 0 0
    0 0 0 0
    1 0 1 1
    0 0 0 0
    0 0 0 0
    0 0 0 1
    0 0 0 1
    1 0 0 0

    Sample Output:

    26
    #include<cstdio>
    #include<queue>
    using namespace std;
    struct node{
        int x,y,z;
    }Node;
    int m,n,l,T;
    int pixel[1290][130][61];
    bool inq[1290][130][61] = {false};
    int X[6]={0,0,0,0,1,-1};
    int Y[6]={0,0,1,-1,0,0};
    int Z[6]={1,-1,0,0,0,0};
    bool judge(int x,int y,int z){
        if(x<0 || x>=m || y<0 || y>=n||z<0 || z>=l){
            return false;
        }
        if(inq[x][y][z] == true || pixel[x][y][z] == 0)
            return false;
        return true;
    }
    int BFS(int x,int y,int z){
        int tot = 0;
        queue<node> Q;
        Node.x = x,Node.y = y,Node.z = z;
        Q.push(Node);
        inq[x][y][z] = true;
        while(!Q.empty()){
            node top = Q.front();
            Q.pop();
            tot++;
            for(int i=0;i<6;i++){
                int newX = top.x + X[i];
                int newY = top.y + Y[i];
                int newZ = top.z + Z[i];
                if(judge(newX,newY,newZ)){
                    Node.x = newX,Node.y = newY,Node.z = newZ;
                    Q.push(Node);
                    inq[newX][newY][newZ] = true;
                }
            }
        }
        if(tot >= T)
            return tot;
        else
            return 0;
    }
    int main(){
        scanf("%d%d%d%d",&m,&n,&l,&T);
        for(int z=0;z<l;z++){
            for(int x=0;x<m;x++){
                for(int y = 0;y <n;y++){
                    scanf("%d",&pixel[x][y][z]);
                }
            }
        }
        int ans = 0;
        for(int z=0;z<l;z++){
            for(int x=0;x<m;x++){
                for(int y = 0;y <n;y++){
                    if(pixel[x][y][z] == 1 && inq[x][y][z] == false){
                        ans += BFS(x,y,z);
                    }
                }
            }
        }
        printf("%d
    ",ans);
        return 0;
    }


  • 相关阅读:
    深入理解泛型之JAVA泛型的继承和实现、泛型擦除
    hadoop过程中遇到的错误与解决方法
    微服务拆分到什么粒度合适——康威定律
    墨菲定律(设计系统)和康威定律(系统划分)
    Hadoop-Impala学习笔记之SQL参考
    Hadoop-Impala学习笔记之管理
    Hadoop2-HDFS学习笔记之入门(不含YARN及MR的调度功能)
    Hadoop-Impala学习笔记之入门
    解决 Invalid character found in method name. HTTP method names must be tokens 异常信息
    从康威定律和技术债看研发之痛
  • 原文地址:https://www.cnblogs.com/coderying/p/12262821.html
Copyright © 2020-2023  润新知