• 广义逆阵


    广义逆阵$A^+$

    设$A=A_{n imes n}$,具有如下四个性质:

    (1)$AXA=A$

    (2)$XAX=X$

    (3)$(AX)^{H}=AX$

    (4)$(XA)^{H}=XA$

    称$X$为$A$的广义逆阵,记为$X=A^+$

    常见的$A^+$:

    (1)$0_{m imes n}^+=0_{n imes n}$

    (2)可逆方阵$A=A_{n imes n}$,$A^+=A^{-1}$

    (3)一阶复数阵a:$a=0 Rightarrow a^+=0$,$a e 0 Rightarrow a^+=frac{1}{a}$

    $A^+$的唯一性:给定A后,只有唯一的$A^+$。

    求解$B^+$:

    (1)(高阵)若$B=B_{m imes r}$,$rank(B)=r$,即B为高阵,则$B^+=B_L=(B^HB)^{-1}B^H$,且$B^+B=I$

    (1)(低阵)若$B=B_{r imes n}$,$rank(B)=r$,即B为低阵,则$B^+=B_L=B^H(BB^H)^{-1}$,且$BB^+=I$

    (3)高低分解公式:$A=A_{m imes n}=BC$为高低分解,则有$A^+=C^+B^+$且$B^+B=CC^+=I$,其中$B^+=(B^HB)^{-1}B^H, C^+=C^H(CC^H)^{-1}$。

    (4)

    [egin{array}{l}
    B = left[ {egin{array}{*{20}{c}}
    A&0
    end{array}} ight] Rightarrow {B^ + } = left[ {egin{array}{*{20}{c}}
    {{A^ + }}\
    {{0^ + }}
    end{array}} ight]\
    B = left[ {egin{array}{*{20}{c}}
    A\
    0
    end{array}} ight] Rightarrow {B^ + } = left[ {egin{array}{*{20}{c}}
    {{A^ + }}&{{0^ + }}
    end{array}} ight]
    end{array}]

    (5)(正SVD分解)若$A=P Delta Q^H$,为正SVD,P和Q为列半酉阵,$P^HP=Q^HQ=I$,则$A^+=QDelta^{-1}P^H$

    证明:

    1、[A{A^ + }A = (PDelta {Q^H})(Q{Delta ^{ - 1}}{P^H})(PDelta {Q^H}) = PDelta {Q^H} = A]

    2、[{A^ + }A{A^ + } = (Q{Delta ^{ - 1}}{P^H})(PDelta {Q^H})(Q{Delta ^{ - 1}}{P^H}) = Q{Delta ^{ - 1}}{P^H} = {A^ + }]

    3、[A{A^ + } = P{P^H}(Hermite)]

    4、[{A^ + }A = {Q^H}Q(Hermite)]

    (6)(秩1分解)若$A=A_{m imes n}$且$rank(A)=1$,则$A = frac{{{A^H}}}{{sum {{{left| {{a_{ij}}} ight|}^2}} }}$

    (7)(QR分解)若$A=QR$,$Q^HQ=I$,则$A^+=R^+Q^+=R^{-1}Q^+$

    (8)(谱分解)若A为正规阵,且有谱分解$A=lambda_1G_1+lambda_2G_2+...+lambda_kG_k$,则$A^+=lambda_1^+G_1+lambda_2G_2^++...+lambda_kG_k^+$

    (9)

    (i)若P为列半酉阵($Q^HQ=I$),则$P^+=P^H$

    (ii)若P为列半酉阵($QQ^H=I$),则$P^+=P^H$

    (iii)$(A^H)^+=(A^+)^H$

    (10)(分块矩阵)

    [A = left[ {egin{array}{*{20}{c}}
    B&0\
    0&D
    end{array}} ight] Rightarrow {A^ + } = left[ {egin{array}{*{20}{c}}
    {{B^ + }}&0\
    0&{{D^ + }}
    end{array}} ight]]

    证明:

    证明条件(1)

    [A{A^ + }A = left[ {egin{array}{*{20}{c}}
    B&0\
    0&D
    end{array}} ight]left[ {egin{array}{*{20}{c}}
    {{B^ + }}&0\
    0&{{D^ + }}
    end{array}} ight]left[ {egin{array}{*{20}{c}}
    B&0\
    0&D
    end{array}} ight] = left[ {egin{array}{*{20}{c}}
    {B{B^ + }B}&0\
    0&{D{D^ + }D}
    end{array}} ight] = left[ {egin{array}{*{20}{c}}
    B&0\
    0&D
    end{array}} ight]]

    证明条件(2)

    [{A^ + }A{A^ + } = left[ {egin{array}{*{20}{c}}
    {{B^ + }}&0\
    0&{{D^ + }}
    end{array}} ight]left[ {egin{array}{*{20}{c}}
    B&0\
    0&D
    end{array}} ight]left[ {egin{array}{*{20}{c}}
    {{B^ + }}&0\
    0&{{D^ + }}
    end{array}} ight] = left[ {egin{array}{*{20}{c}}
    {{B^{ m{ + }}}B{B^{ m{ + }}}}&0\
    0&{{D^ + }D{D^ + }}
    end{array}} ight] = left[ {egin{array}{*{20}{c}}
    {{B^ + }}&0\
    0&{{D^ + }}
    end{array}} ight]]

    证明条件(3):

    [{(A{A^{ m{ + }}})^H} = {left[ {egin{array}{*{20}{c}}
    {{B^{ m{ + }}}B}&0\
    0&{{D^{ m{ + }}}D}
    end{array}} ight]^H} = left[ {egin{array}{*{20}{c}}
    {{{({B^{ m{ + }}}B)}^H}}&0\
    0&{{{({D^{ m{ + }}}D)}^H}}
    end{array}} ight] = left[ {egin{array}{*{20}{c}}
    {{B^{ m{ + }}}B}&0\
    0&{{D^{ m{ + }}}D}
    end{array}} ight] = A{A^ + }]

    证明条件(4):

    [{({A^ + }A)^H} = {left[ {egin{array}{*{20}{c}}
    {B{B^ + }}&0\
    0&{D{D^ + }}
    end{array}} ight]^H} = left[ {egin{array}{*{20}{c}}
    {{{(B{B^ + })}^H}}&0\
    0&{{{(D{D^ + })}^H}}
    end{array}} ight] = left[ {egin{array}{*{20}{c}}
    {B{B^ + }}&0\
    0&{D{D^ + }}
    end{array}} ight] = {A^ + }A]

  • 相关阅读:
    hadoop 3.0.0 alpha3 安装、配置
    集群使用初步
    转 mysql 中sql 语句查询今天、昨天、7天、近30天、本月、上一月 数据
    java 内存溢出
    获取手机上安装的应用信息
    使apk具有system权限
    Android基础之sqlite 数据库简单操作
    转 Android:文件下载和写入SD卡学习小结
    Android判断Service是否运行
    Android 定时重复启动弹出窗口。
  • 原文地址:https://www.cnblogs.com/codeDog123/p/10217782.html
Copyright © 2020-2023  润新知