• SVD分解


    正奇异值:设$A=A_{m imes n}, rank(A)=p>0$,则$lambda ({A^H}A)$与$lambda (A{A^H})$恰有p个正特征根,${lambda _1} > 0,{lambda _2} > 0,...,{lambda _p} > 0$

    $lambda ({A^H}A) = { {lambda _1},{lambda _2},...,{lambda _p},0,...,0} $  n-p个0

    $lambda (A{A^H}) = { {lambda _1},{lambda _2},...,{lambda _p},0,...,0} $  m-p个0

    称$sqrt {{lambda _1}} ,sqrt {{lambda _2}} ,,...,sqrt {{lambda _p}} $为正奇异值,记为$S^{+}(A) = { sqrt {{lambda _1}} ,sqrt {{lambda _2}} ,,...,sqrt {{lambda _p}} } $

    正奇异值分解:任意$A=A_{m imes n}$,秩$rank(A)=r>0$,则有$A = PDelta {Q^H}$,

    [Delta { m{ = }}left[ {egin{array}{*{20}{c}}
    {sqrt {{lambda _1}} }&0&0&0\
    0&{sqrt {{lambda _2}} }&0&0\
    0&0&{...}&0\
    0&0&0&{sqrt {{lambda _p}} }
    end{array}} ight]]

    P和Q为半酉阵,$P^HP=Q^HQ=I$

    (1)求$lambda (A{A^H}) = lambda ({A^H}A) = { {lambda _1},{lambda _2},...,{lambda _p}$与特征向量$x_1,x_2,...,x_r$

    (2)令这里的$x_1,x_2,...,x_r$得互相垂直

    [P = left[ {egin{array}{*{20}{c}}
    {frac{{A{X_1}}}{{left| {A{X_1}} ight|}}}&{frac{{A{X_2}}}{{left| {A{X_2}} ight|}}}&{...}&{frac{{A{X_r}}}{{left| {A{X_r}} ight|}}}
    end{array}} ight]]

    [Q = left[ {egin{array}{*{20}{c}}
    {frac{{{X_1}}}{{left| {{X_1}} ight|}}}&{frac{{{X_2}}}{{left| {{X_2}} ight|}}}&{...}&{frac{{{X_r}}}{{left| {{X_r}} ight|}}}
    end{array}} ight]]

    $P=P_{m imes r}, Q=Q_{n imes r}$

    (3)有$A = PDelta {Q^H}$

    奇异值分解:

    (1)根据正奇异值分解得到$A = PDelta {Q^H}

    (2)扩充$W=[Q_{m imes r},Q_{m imes (n-r)}], V=[P_{n imes r},P_{n imes (n-r)}]$使得P和Q为从半酉阵扩展为酉阵

    (3)$Delta_{r imes r}$0扩充为$Delta_{n imes n}$

    [D { m{ = }}left[ {egin{array}{*{20}{c}}
    Delta &0\
    0&0
    end{array}} ight]]

    (4)有

    [{ m{A = W}}left[ {egin{array}{*{20}{c}}
    Delta &0\
    0&0
    end{array}} ight]{V^H}]

    证明:

    [{ m{A = W}}left[ {egin{array}{*{20}{c}}
    Delta &0\
    0&0
    end{array}} ight]{V^H} = left[ {egin{array}{*{20}{c}}
    {{P_{m imes r}}}&{{P_{m imes (m - r)}}}
    end{array}} ight]{left[ {egin{array}{*{20}{c}}
    Delta &0\
    0&0
    end{array}} ight]_{m imes n}}{left[ {egin{array}{*{20}{c}}
    {{Q_{n imes r}}}&{{Q_{n imes (n - r)}}}
    end{array}} ight]^H} = {P_{m imes r}}Delta {Q_{n imes r}} = A]

    奇异值分解性质:

    (1)方阵$A=A_{n imes n}$,有$S_1S_2...S_n=|det(A)|=|lambda_1 lambda_2...lambda_n|$

    [lambda (A) = { {lambda _1},{lambda _1},...,{lambda _n}} ]

    [lambda (A{A^H}) = lambda ({A^H}A) = { {t_1},{t_2},...,{t_n}} ]

    [S(A) = { sqrt {{t_1}} ,sqrt {{t_2}} ,...,sqrt {{t_n}} } ]

    有:

    [sqrt {{t_1}} sqrt {{t_2}} ...sqrt {{t_n}}  = left| {det (A)} ight| = left| {{lambda _1}{lambda _1}...{lambda _n}} ight|]

    证明:

    [det ({A^H}A) = det (A{A^H}) = det ({A^H})det (A) = det (overline {{A^T}} )det (A) = overline {det (A)} det (A) = {left| {det (A)} ight|^2} Rightarrow det ({A^H}A) = {left| {det (A)} ight|^2}]

    [det ({A^H}A) = {t_1}{t_2}...{t_n} = {({S_1}{S_2}...{S_n})^2}]

    [{left| {det (A)} ight|^2} = {left| {{lambda _1}{lambda _1}...{lambda _n}} ight|^2}]

    [{({S_1}{S_2}...{S_n})^2} = {left| {det (A)} ight|^2} = {left| {{lambda _1}{lambda _1}...{lambda _n}} ight|^2} Rightarrow ({S_1}{S_2}...{S_n}) = left| {det (A)} ight| = left| {{lambda _1}{lambda _1}...{lambda _n}} ight|]

    所以:

    [({S_1}{S_2}...{S_n}) = left| {det (A)} ight| = left| {{lambda _1}{lambda _1}...{lambda _n}} ight|]

     正SVD分解性质

    (1)${ m{A}} = PDelta {Q^H} Rightarrow {A^H} = Q{Delta ^H}{P^H}$

    (2)由正SVD:$A=P delta Q^H$:

    [Delta { m{ = }}left[ {egin{array}{*{20}{c}}
    {sqrt {{lambda _1}} }&0&0&0\
    0&{sqrt {{lambda _2}} }&0&0\
    0&0&{...}&0\
    0&0&0&{sqrt {{lambda _p}} }
    end{array}} ight]]

    [P = left[ {egin{array}{*{20}{c}}
    {{X_1}}&{{X_2}}&{...}&{{X_r}}
    end{array}} ight]({X_1} ot {X_2} ot ... ot {X_r})]

    [Q = left[ {egin{array}{*{20}{c}}
    {{Y_1}}&{{Y_2}}&{...}&{{Y_r}}
    end{array}} ight]({Y_1} ot {Y_2} ot ... ot {Y_r})]

    有:

    [A = left[ {egin{array}{*{20}{c}}
    {{X_1}}&{{X_2}}&{...}&{{X_r}}
    end{array}} ight]left[ {egin{array}{*{20}{c}}
    {sqrt {{lambda _1}} }&0&0&0\
    0&{sqrt {{lambda _2}} }&0&0\
    0&0&{...}&0\
    0&0&0&{sqrt {{lambda _r}} }
    end{array}} ight]left[ {egin{array}{*{20}{c}}
    {Y_1^H}\
    {egin{array}{*{20}{c}}
    {Y_2^H}\
    {...}
    end{array}}\
    {Y_r^H}
    end{array}} ight] = sqrt {{lambda _1}} {X_1}Y_1^H + ... + sqrt {{lambda _r}} {X_r}Y_r^H]

     可以令$sqrt {{lambda _1}}  ge sqrt {{lambda _2}}  ge ... ge sqrt {{lambda _r}} $

    [A{ m{ = }}sqrt {{lambda _1}} {X_1}Y_1^H + ... + sqrt {{lambda _r}} {X_r}Y_r^H approx sqrt {{lambda _1}} {X_1}Y_1^H]

    可以近似表达A

    (3)

    [A = {A_{m imes n}},{S^ + }(A) = { {S_1},{S_2},...,{S_r}}  Rightarrow tr({A^H}A) = tr(A{A^H}) = sum {{{left| {{a_{ij}}} ight|}^2}} ]

  • 相关阅读:
    JS进阶篇--函数防抖(debounce)
    vue注册全局组件分页
    vue下拉框清空
    vue中的watch监听
    五:request和response的使用
    四:servlet最终形态
    三:登录功能实现,servlet
    二:Tomcat与登录
    一:JavaWeb
    Linux安装JAVA并且配置环境
  • 原文地址:https://www.cnblogs.com/codeDog123/p/10206787.html
Copyright © 2020-2023  润新知