• Flink101-快速示例


    验证本文需要具备Docker及Docker-composer,作者使用的环境为Mac + Docker

    Docker启动Flink集群

    首先下载Flink的镜像docker pull flink,我下载的是1.9.0版本。

    然后编写 docker-composer.yml

    version: "2.1"
    services:
      jobmanager:
        image: flink
        expose:
          - "6123"
        ports:
          - "8081:8081"
        command: jobmanager
        environment:
          - JOB_MANAGER_RPC_ADDRESS=jobmanager
    
      taskmanager:
        image: flink
        expose:
          - "6121"
          - "6122"
        depends_on:
          - jobmanager
        command: taskmanager
        links:
          - "jobmanager:jobmanager"
        environment:
          - JOB_MANAGER_RPC_ADDRESS=jobmanager
    

    示例代码

    本代码完成的功能是从SOCKET端口中读取文本信息,分词后在统计周期内计算每个单词出现的次数。这里只是列出关键代码,全部工程代码可以参考我的Github

    public class SocketWindowWordCount {
        public static void main(String[] args) throws Exception {
            final int port;
            final String host;
            port = 9008;
            host = "192.168.65.2";
    
            final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            DataStream<String> text = env.socketTextStream(host, port, "
    ");
    
            DataStream<WordWithCount> windowCounts = text
                .flatMap(new FlatMapFunction<String, WordWithCount>(){
                    @Override
                    public void flatMap(String value, Collector<WordWithCount> out){
                        for(String word : value.split("\s")){
                            out.collect(new WordWithCount(word, 1L));
                        }
                    }
                })
                .keyBy("word")
                .timeWindow(Time.seconds(5), Time.seconds(1))
                .reduce(new ReduceFunction<WordWithCount>(){
                    @Override
                    public WordWithCount reduce(WordWithCount a, WordWithCount b){
                        return new WordWithCount(a.word, a.count+b.count);
                    }
                });
    
            windowCounts.print().setParallelism(1);
            env.execute("Socket Window WordCount");
        }
    
        public static class WordWithCount {
            public String word;
            public long count;
    
            public WordWithCount(){}
    
            public WordWithCount(String word, long count){
                this.word = word;
                this.count = count;
            }
    
            @Override
            public String toString(){
                return word + ":" + count;
            }
        }
    

    运行示例

    首先将flink运行起来,在docker-compose.yml所在目录下执行

    $ docker-compose up -d
    $ docker ps
    CONTAINER ID        IMAGE               COMMAND                  CREATED             STATUS              PORTS                              NAMES
    dc54c9cf6304        flink               "/docker-entrypoint.…"   3 days ago          Up 4 seconds        6121-6123/tcp, 8081/tcp            flink_taskmanager_1
    2eab6b0fd0f1        flink               "/docker-entrypoint.…"   3 days ago          Up 3 seconds        6123/tcp, 0.0.0.0:8081->8081/tcp   flink_jobmanager_1
    

    可以看到两个实例已经启动了,然后新开一个终端窗口,运行nc监听程序。

    $ nc -l 9008
    

    打开Flink界面,选择Submit New Job,上传编译好的jar包。
    image.png

    提交后可以看到运行的app已经收到了数据
    image.png

    使用docker logs -f命令,然后在nc窗口中输入一些单词,你就能够在docker窗口下看到统计结果输出了。
    image.png

    参考资料

    1. Flink-基于Docker的开发环境搭建
    2. Docker composer 快速入门
  • 相关阅读:
    Freemarker-2.3.22 Demo
    Freemarker-2.3.22 Demo
    Freemarker-2.3.22 Demo
    Freemarker-2.3.22 Demo
    Oracle PLSQL Demo
    Oracle PLSQL Demo
    Oracle PLSQL Demo
    Oracle PLSQL Demo
    Oracle PLSQL Demo
    Oracle PLSQL Demo
  • 原文地址:https://www.cnblogs.com/cocowool/p/flink_101_quick_start.html
Copyright © 2020-2023  润新知