• Cqoi2017试题泛做


    Day1

    4813: [Cqoi2017]小Q的棋盘

    树形背包DP。

     1 #include <cstdio>
     2 
     3 #define maxn 110
     4 #define R register
     5 #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
     6 struct Edge {
     7     Edge *next;
     8     int to;
     9 } *last[maxn], e[maxn << 1], *ecnt = e;
    10 inline void link(R int a, R int b)
    11 {
    12     *++ecnt = (Edge) {last[a], b}; last[a] = ecnt;
    13     *++ecnt = (Edge) {last[b], a}; last[b] = ecnt;
    14 }
    15 int f1[maxn][maxn], f2[maxn][maxn], m;
    16 bool vis[maxn];
    17 void dfs(R int x)
    18 {
    19     vis[x] = 1;
    20     for (R int i = 0; i <= m; ++i) f1[x][i] = f2[x][i] = 1;
    21     for (R Edge *iter = last[x]; iter; iter = iter -> next)
    22         if (!vis[iter -> to])
    23         {
    24             dfs(iter -> to);
    25             for (R int j = m; j; --j)
    26                 for (R int k = 0; k < j; ++k)
    27                 {
    28                     cmax(f1[x][j], f2[x][j - k - 1] + f1[iter -> to][k]);
    29                     k != j - 1 ? cmax(f1[x][j], f1[x][j - k - 2] + f2[iter -> to][k]) : 0;
    30                 }
    31             for (R int j = m; j >= 2; --j)
    32                 for (R int k = 0; k < j - 1; ++k)
    33                     cmax(f2[x][j], f2[x][j - k - 2] + f2[iter -> to][k]);
    34         }
    35 }
    36 int main()
    37 {
    38     R int n; scanf("%d%d", &n, &m);
    39     for (R int i = 1; i < n; ++i) {R int a, b; scanf("%d%d", &a, &b); link(a, b);}
    40     dfs(0);
    41     R int ans = 1;
    42     for (R int i = 1; i <= m; ++i) cmax(ans, f1[0][i]), cmax(ans, f2[0][i]);
    43     printf("%d
    ", ans);
    44     return 0;
    45 }
    D1T1

    4814: [Cqoi2017]小Q的草稿

     暂时还没做。marked。

    4815: [Cqoi2017]小Q的表格

    做完发现自己推式子和推结论的能力不足。这题有一个结论是只和对角线上的元素的权值有关,并且f[a,b]可以写成k*a*b的形式(这个结论我也是网上看的,但是我向BZOJ要的数据里这个条件并不满足,如果直接将题目给你的x/a/b得到的不会是一个整数,而把x/a/b改成模意义下x*a^(-1)*b^(-1)居然就能过了)。然后推出来是∑f[d]*∑∑(i*j*[gcd(i,j)==d]),然后还有一个结论是

    ∑i*[gcd(i,n)==1]=phi(n)*n/2。如果知道这两个结论应该剩下就只剩套路了(?)。设g[n] = ∑∑(i*j*[gcd(i,j)==1], 1<=i,j<=n),答案变成求∑f[d]*g[k/d]。然后k/d是根号分段的,根号枚举一下然后动态地求前缀和。前缀和这里用分块来实现根号修改O1查询。总的复杂度O(n+m√n)。

     1 #include <cstdio>
     2 #include <cmath>
     3 
     4 #define R register
     5 #define maxn 4000010
     6 #define maxs 2333
     7 typedef long long ll;
     8 const int mod = 1e9 + 7;
     9 int pr[maxn], prcnt, phi[maxn], g[maxn], f[maxn];
    10 int sum[maxn], ssum[maxs];
    11 bool vis[maxn];
    12 inline int qpow(R int base, R int power)
    13 {
    14     R int ret = 1;
    15     for (; power; power >>= 1, base = 1ll * base * base % mod)
    16         power & 1 ? ret = 1ll * ret * base % mod : 0;
    17     return ret;
    18 }
    19 int gcd(R int a, R int b)
    20 {
    21     return !b ? a : gcd(b, a % b);
    22 }
    23 int main()
    24 {
    25     R int m, n; scanf("%d%d", &m, &n);
    26     phi[1] = 1; g[1] = 1; f[1] = 1;
    27     for (R int i = 2; i <= n; ++i)
    28     {
    29         if (!vis[i]) pr[++prcnt] = i, phi[i] = i - 1;
    30         g[i] = (g[i - 1] + 1ll * i * i % mod * phi[i]) % mod;
    31         f[i] = 1ll * i * i % mod;
    32         for (R int j = 1; j <= prcnt && 1ll * pr[j] * i <= n; ++j)
    33         {
    34             vis[i * pr[j]] = 1;
    35             if (i % pr[j] == 0)
    36             {
    37                 phi[i * pr[j]] = phi[i] * pr[j];
    38                 break;
    39             }
    40             else phi[i * pr[j]] = phi[i] * phi[pr[j]];
    41         }
    42     }
    43     R int size = sqrt(n), tot = n / size + 1;
    44 //    printf("
    size%d
    ", size);
    45     for (R int i = 1; i <= n; ++i)
    46         if (i % size == 0) ssum[i / size] = (ssum[i / size - 1] + sum[i - 1]) % mod, sum[i] = f[i];
    47         else sum[i] = (sum[i - 1] + f[i]) % mod;
    48 //    for (R int i = 1; i <= n; ++i) printf("%d ", sum[i]); puts("");
    49     for (; m; --m)
    50     {
    51         R int a, b, k, d; R ll x;
    52         scanf("%d%d%lld%d", &a, &b, &x, &k);
    53 //        if (x % a != 0 || x % b != 0) puts("WA"), printf("%lld %d %d %d
    ", x, a, b, m);
    54         x %= mod;
    55 //        printf("kk %lld
    ", kk);
    56         f[d = gcd(a, b)] = 1ll * x * qpow(1ll * a * b % mod, mod - 2) % mod * d % mod * d % mod;
    57         R int spos = d / size + 1;
    58         for (R int i = d; i < spos * size; ++i) sum[i] = ((i % size == 0 ? 0 : sum[i - 1]) + f[i]) % mod;
    59         for (R int i = spos; i <= tot; ++i) ssum[i] = (ssum[i - 1] + sum[i * size - 1]) % mod;
    60 //        for (R int i = 1; i <= n; ++i) printf("%d ", sum[i]); puts("");
    61         R int ans = 0;
    62         #define query(x) (sum[(x)] + ssum[(x) / size])
    63         for (R int i = 1, j; i <= k; i = j + 1)
    64         {
    65             j = k / (k / i);
    66             ans = (ans + 1ll * (query(j) % mod - query(i - 1) % mod + mod) % mod * g[k / i]) % mod;
    67         }
    68         printf("%d
    ", ans);
    69     }
    70     return 0;
    71 }
    D1T3

    Day2

    4822: [Cqoi2017]老C的任务

    挺裸的二维数点问题。扫描线+树状数组简单维护即可。(将一个询问拆成几个前缀询问加加减减的形式)

     1 #include <cstdio>
     2 #include <algorithm>
     3 
     4 #define R register
     5 #define lowbit(_x) ((_x) & -(_x))
     6 #define maxn 100010
     7 struct Event {
     8     int type, id, x, l, r;
     9     inline bool operator < (const Event &that) const {return x < that.x || (x == that.x && type < that.type);}
    10 } p[maxn << 2];
    11 int hash[maxn << 2], hcnt, pcnt;
    12 typedef long long ll;
    13 ll b[maxn << 2], ans[maxn];
    14 inline void add(R int pos, R int val)
    15 {
    16     for (; pos <= hcnt; pos += lowbit(pos)) b[pos] += val;
    17 }
    18 inline ll query(R int pos)
    19 {
    20     R ll ret = 0;
    21     for (; pos; pos -= lowbit(pos)) ret += b[pos];
    22     return ret;
    23 }
    24 int main()
    25 {
    26     R int n, m, pcnt = 0; scanf("%d%d", &n, &m);
    27     for (R int i = 1; i <= n; ++i)
    28     {
    29         R int x, y, pi; scanf("%d%d%d", &x, &y, &pi);
    30         hash[++hcnt] = y;
    31         p[++pcnt] = (Event) {1, 0, x, y, pi};
    32     }
    33     for (R int i = 1; i <= m; ++i)
    34     {
    35         R int x_1, y_1, x_2, y_2; scanf("%d%d%d%d", &x_1, &y_1, &x_2, &y_2);
    36         hash[++hcnt] = y_1; hash[++hcnt] = y_2;
    37         p[++pcnt] = (Event) {2, i, x_1 - 1, y_1, y_2};
    38         p[++pcnt] = (Event) {3, i, x_2, y_1, y_2};
    39     }
    40     std::sort(hash + 1, hash + hcnt + 1);
    41     hcnt = std::unique(hash + 1, hash + hcnt + 1) - hash - 1;
    42     std::sort(p + 1, p + pcnt + 1);
    43     for (R int i = 1; i <= pcnt; ++i)
    44     {
    45         p[i].l = std::lower_bound(hash + 1, hash + hcnt + 1, p[i].l) - hash;
    46         if (p[i].type == 1)
    47         {
    48             add(p[i].l, p[i].r);
    49         }
    50         else
    51         {
    52             p[i].r = std::lower_bound(hash + 1, hash + hcnt + 1, p[i].r) - hash;
    53             if (p[i].type == 2) ans[p[i].id] -= query(p[i].r) - query(p[i].l - 1);
    54             else ans[p[i].id] += query(p[i].r) - query(p[i].l - 1);
    55         }
    56     }
    57     for (R int i = 1; i <= m; ++i) printf("%lld
    ", ans[i]);
    58     return 0;
    59 }
    D2T1

    4823: [Cqoi2017]老C的方块

    刚开始我连构图都没想到。后来看了题解完构图还是构错了。

    将格子染成如上图所示的四种颜色,然后每一种方块都可以表示成0-1-2-3的形式。然后构建分层图,一条从s到t的路径表示的就是一个弃疗的方块,所以跑一个最小割即可。然后我一开始好像染色还染错了,注意一下染色的顺序(一定得都是0-1-2-3的形式),如果染不清楚的话可能会有奇怪的错误。还有,10w的网络流到底是怎么跑过去的,我不是很能理解啊。。。

      1 #include <cstdio>
      2 #include <map>
      3 #include <algorithm>
      4 #include <cstring>
      5  
      6 #define R register
      7 #define P std::pair<int, int>
      8 #define maxn 200010
      9 #define inf 0x7fffffff
     10 #define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
     11 std::map<P, int> id;
     12 int x[maxn], y[maxn], w[maxn];
     13 struct Edge {
     14     Edge *next, *rev;
     15     int to, cap;
     16 } *last[maxn], *cur[maxn], e[maxn * 10], *ecnt = e;
     17 inline void link(R int a, R int b, R int w)
     18 {
     19 //  printf("%d %d %d
    ", a, b, w);
     20     *++ecnt = (Edge) {last[a], ecnt + 1, b, w}; last[a] = ecnt;
     21     *++ecnt = (Edge) {last[b], ecnt - 1, a, 0}; last[b] = ecnt;
     22 }
     23 int dep[maxn], q[maxn], s, t, ans;
     24 inline bool bfs()
     25 {
     26     memset(dep, -1, (t + 1) << 2);
     27     dep[q[1] = t] = 0; R int head = 0, tail = 1;
     28     while (head < tail)
     29     {
     30         R int now = q[++head];
     31         for (R Edge *iter = last[now]; iter; iter = iter -> next)
     32             if (iter -> rev -> cap && dep[iter -> to] == -1)
     33                 dep[q[++tail] = iter -> to] = dep[now] + 1;
     34     }
     35     return dep[s] != -1;
     36 }
     37 int dfs(R int x, R int f)
     38 {
     39     if (x == t) return f;
     40     R int used = 0;
     41     for (R Edge* &iter = cur[x]; iter; iter = iter -> next)
     42         if (iter -> cap && dep[iter -> to] + 1 == dep[x])
     43         {
     44             R int v = dfs(iter -> to, dmin(f - used, iter -> cap));
     45             iter -> cap -= v;
     46             iter -> rev -> cap += v;
     47             used += v;
     48             if (used == f) return f;
     49         }
     50     return used;
     51 }
     52 void dinic()
     53 {
     54     while (bfs())
     55     {
     56         memcpy(cur, last, sizeof cur);
     57         ans += dfs(s, inf);
     58     }
     59 }
     60 void build(R int _x, R int _y, R int i)
     61 {
     62     R P next;
     63     next = std::make_pair(_x, _y);
     64     if (id[next]) link(id[next] << 1 | 1, i << 1, inf);
     65 }
     66 int main()
     67 {
     68     R int c, r, n; scanf("%d%d%d", &c, &r, &n);
     69     for (R int i = 1; i <= n; ++i)
     70     {
     71         scanf("%d%d%d", &x[i], &y[i], &w[i]);
     72         R P pos = std::make_pair(x[i], y[i]);
     73         id[pos] = i;
     74     }
     75     s = 0; t = n * 2 + 2;
     76     for (R int i = 1; i <= n; ++i)
     77     {
     78         R int col = y[i] & 1 ? x[i] % 4 : (x[i] % 4) ^ 1;
     79 //      printf("x %d y %d col %d
    ", x[i], y[i], col);
     80         link(i << 1, i << 1 | 1, w[i]);
     81         if (col == 0)
     82         {
     83             link(s, i << 1, inf);
     84         }
     85         else if (col == 1)
     86         {
     87             build(x[i], y[i] - 1, i);
     88             build(x[i], y[i] + 1, i);
     89             build(x[i] + (y[i] & 1 ? -1 : 1), y[i], i);
     90         }
     91         else if (col == 2)
     92         {
     93             build(x[i] + (y[i] & 1 ? -1 : 1), y[i], i);
     94         }
     95         else if (col == 3)
     96         {
     97             build(x[i], y[i] - 1, i);
     98             build(x[i], y[i] + 1, i);
     99             build(x[i] + (y[i] & 1 ? -1 : 1), y[i], i);
    100             link(i << 1 | 1, t, inf);
    101         }
    102     }
    103     dinic();
    104     printf("%d
    ", ans);
    105     return 0;
    106 }
    D2T2

    4824: [Cqoi2017]老C的键盘

    还没做。marked。

  • 相关阅读:
    js对象
    实习经历日志02
    前端实习经历日志01
    js变量提升
    WebApls-元素(offset, client, scroll)
    WebApls-Bom
    WebApls-DOM的核心总结
    WebApls-节点01
    javascript-
    Javascript-字符串对象
  • 原文地址:https://www.cnblogs.com/cocottt/p/6875527.html
Copyright © 2020-2023  润新知