• Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_训练模型


    原理就不多讲了,直接上代码,有详细注释。

    #coding:utf-8
    
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
    
    #每个批次的大小
    batch_size = 100
    
    n_batch = mnist.train._num_examples // batch_size
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape,stddev=0.1) #生成一个截断的正态分布
        return tf.Variable(initial)
    
    def bias_variable(shape):
        initial = tf.constant(0.1,shape = shape)
        return tf.Variable(initial)
    
    #卷基层
    def conv2d(x,W):
        return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
    #池化层
    def max_pool_2x2(x):
        return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
    #定义两个placeholder
    x = tf.placeholder(tf.float32, [None,784])
    y = tf.placeholder(tf.float32,[None,10])
    
    #改变x的格式转为4D的向量[batch,in_height,in_width,in_channels]
    x_image = tf.reshape(x, [-1,28,28,1])
    
    #初始化第一个卷基层的权值和偏置
    W_conv1 = weight_variable([5,5,1,32]) #5*5的采样窗口 32个卷积核从一个平面抽取特征 32个卷积核是自定义的
    b_conv1 = bias_variable([32])  #每个卷积核一个偏置值
    
    #把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
    h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
    h_pool1 = max_pool_2x2(h_conv1) #进行max-pooling
    
    #初始化第二个卷基层的权值和偏置
    W_conv2 = weight_variable([5,5,32,64]) # 5*5的采样窗口 64个卷积核从32个平面抽取特征  由于前一层操作得到了32个特征图
    b_conv2 = bias_variable([64]) #每一个卷积核一个偏置值
    
    #把h_pool1和权值向量进行卷积 再加上偏置值 然后应用于relu激活函数
    h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2) #进行max-pooling
    
    #28x28的图片第一次卷积后还是28x28 第一次池化后变为14x14
    #第二次卷积后 变为14x14 第二次池化后变为7x7
    #通过上面操作后得到64张7x7的平面
    
    #初始化第一个全连接层的权值
    W_fc1 = weight_variable([7*7*64,1024])#上一层有7*7*64个神经元,全连接层有1024个神经元
    b_fc1 = bias_variable([1024]) #1024个节点
    
    #把第二个池化层的输出扁平化为一维
    h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
    #求第一个全连接层的输出
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
    
    #keep_prob用来表示神经元的输出概率
    keep_prob  = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
    
    #初始化第二个全连接层
    W_fc2 = weight_variable([1024,10])
    b_fc2 = bias_variable([10])
    
    #计算输出
    prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) 
    
    #交叉熵代价函数
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
    
    #使用AdamOptimizer进行优化
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    #结果存放在一个布尔列表中
    correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) #argmax返回一维张量中最大的值所在的位置
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch in range(50):
            for batch in range(n_batch):
                batch_xs,batch_ys = mnist.train.next_batch(batch_size)
                sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})
            acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
            print ("Iter "+ str(epoch) + ", Testing Accuracy= " + str(acc))
      saver.save(sess,save_path='/home/xxx/logs/mnistmodel',global_step=1)#将训练出来的权重参数保存

    结果

    Iter 0, Testing Accuracy= 0.8517
    Iter 1, Testing Accuracy= 0.9612
    Iter 2, Testing Accuracy= 0.9769
    Iter 3, Testing Accuracy= 0.9804
    Iter 4, Testing Accuracy= 0.9832
    Iter 5, Testing Accuracy= 0.9844
    Iter 6, Testing Accuracy= 0.988
    Iter 7, Testing Accuracy= 0.9882
    Iter 8, Testing Accuracy= 0.9875
    Iter 9, Testing Accuracy= 0.9889
    Iter 10, Testing Accuracy= 0.9891
    Iter 11, Testing Accuracy= 0.9897
    Iter 12, Testing Accuracy= 0.9891
    Iter 13, Testing Accuracy= 0.9897
    Iter 14, Testing Accuracy= 0.9905
    Iter 15, Testing Accuracy= 0.9913
    Iter 16, Testing Accuracy= 0.9908
    Iter 17, Testing Accuracy= 0.9909
    Iter 18, Testing Accuracy= 0.9913
    Iter 19, Testing Accuracy= 0.9915
    Iter 20, Testing Accuracy= 0.9902
    Iter 21, Testing Accuracy= 0.9899
    Iter 22, Testing Accuracy= 0.9912
    Iter 23, Testing Accuracy= 0.9911
    Iter 24, Testing Accuracy= 0.9907
    Iter 25, Testing Accuracy= 0.9918
    Iter 26, Testing Accuracy= 0.9919
    Iter 27, Testing Accuracy= 0.9916
    Iter 28, Testing Accuracy= 0.9899
    Iter 29, Testing Accuracy= 0.9924
    Iter 30, Testing Accuracy= 0.9913
    Iter 31, Testing Accuracy= 0.992
    Iter 32, Testing Accuracy= 0.9927
    Iter 33, Testing Accuracy= 0.9919
    Iter 34, Testing Accuracy= 0.9922
    Iter 35, Testing Accuracy= 0.9918
    Iter 36, Testing Accuracy= 0.9932
    Iter 37, Testing Accuracy= 0.9924
    Iter 38, Testing Accuracy= 0.9917
    Iter 39, Testing Accuracy= 0.9919
    Iter 40, Testing Accuracy= 0.9933
    Iter 41, Testing Accuracy= 0.9924
    Iter 42, Testing Accuracy= 0.9926
    Iter 43, Testing Accuracy= 0.9932
    Iter 44, Testing Accuracy= 0.9922
    Iter 45, Testing Accuracy= 0.9925
    Iter 46, Testing Accuracy= 0.9928
    Iter 47, Testing Accuracy= 0.9935
    Iter 48, Testing Accuracy= 0.9922
    Iter 49, Testing Accuracy= 0.9926
  • 相关阅读:
    HTML5开发 桌面提醒功能
    自然框架总体设计
    Inversion of Logging
    Wind.js在移动跨平台框架PhoneGap中的异步体验
    MSBuild基本概念
    PortalBasic Web 应用开发框架:应用篇
    检测常见ASP.NET配置安全漏洞
    线程与进程的比较
    多层架构下的一个进销存项目
    Model Driven Architecture
  • 原文地址:https://www.cnblogs.com/cnugis/p/7646423.html
Copyright © 2020-2023  润新知