• 将keras的h5模型转换为tensorflow的pb模型


    h5_to_pb.py
    
    from keras.models import load_model
    import tensorflow as tf
    import os 
    import os.path as osp
    from keras import backend as K
    #路径参数
    input_path = 'input path'
    weight_file = 'weight.h5'
    weight_file_path = osp.join(input_path,weight_file)
    output_graph_name = weight_file[:-3] + '.pb'
    #转换函数
    def h5_to_pb(h5_model,output_dir,model_name,out_prefix = "output_",log_tensorboard = True):
        if osp.exists(output_dir) == False:
            os.mkdir(output_dir)
        out_nodes = []
        for i in range(len(h5_model.outputs)):
            out_nodes.append(out_prefix + str(i + 1))
            tf.identity(h5_model.output[i],out_prefix + str(i + 1))
        sess = K.get_session()
        from tensorflow.python.framework import graph_util,graph_io
        init_graph = sess.graph.as_graph_def()
        main_graph = graph_util.convert_variables_to_constants(sess,init_graph,out_nodes)
        graph_io.write_graph(main_graph,output_dir,name = model_name,as_text = False)
        if log_tensorboard:
            from tensorflow.python.tools import import_pb_to_tensorboard
            import_pb_to_tensorboard.import_to_tensorboard(osp.join(output_dir,model_name),output_dir)
    #输出路径
    output_dir = osp.join(os.getcwd(),"trans_model")
    #加载模型
    h5_model = load_model(weight_file_path)
    h5_to_pb(h5_model,output_dir = output_dir,model_name = output_graph_name)
    print('model saved')
    

     将转换成的pb模型进行加载

    load_pb.py
    
    import tensorflow as tf
    from tensorflow.python.platform import gfile
    
    def load_pb(pb_file_path):
        sess = tf.Session()
        with gfile.FastGFile(pb_file_path, 'rb') as f:
            graph_def = tf.GraphDef()
            graph_def.ParseFromString(f.read())
            sess.graph.as_default()
            tf.import_graph_def(graph_def, name='')
    
        print(sess.run('b:0'))
        #输入
        input_x = sess.graph.get_tensor_by_name('x:0')
        input_y = sess.graph.get_tensor_by_name('y:0')
        #输出
        op = sess.graph.get_tensor_by_name('op_to_store:0')
        #预测结果
        ret = sess.run(op, {input_x: 3, input_y: 4})
        print(ret)
  • 相关阅读:
    [BZOJ3751] [NOIP2014] 解方程 (数学)
    [BZOJ4198] [Noi2015] 荷马史诗 (贪心)
    [BZOJ4034] [HAOI2015] T2 (树链剖分)
    [BZOJ1880] [Sdoi2009] Elaxia的路线 (SPFA & 拓扑排序)
    [BZOJ1088] [SCOI2005] 扫雷Mine
    [BZOJ1004] [HNOI2008] Cards (Polya定理)
    [BZOJ1009] [HNOI2008] GT考试 (KMP & dp & 矩阵乘法)
    [BZOJ1503] [NOI2004] 郁闷的出纳员 (treap)
    [BZOJ1059] [ZJOI2007] 矩阵游戏 (二分图匹配)
    BZOJ2626: JZPFAR
  • 原文地址:https://www.cnblogs.com/cnugis/p/12218103.html
Copyright © 2020-2023  润新知