• tensorflow C++接口调用图像分类pb模型代码


    #include <fstream>
    #include <utility>
    #include <Eigen/Core>
    #include <Eigen/Dense>
    #include <iostream>
     
    #include "tensorflow/cc/ops/const_op.h"
    #include "tensorflow/cc/ops/image_ops.h"
    #include "tensorflow/cc/ops/standard_ops.h"
     
    #include "tensorflow/core/framework/graph.pb.h"
    #include "tensorflow/core/framework/tensor.h"
     
    #include "tensorflow/core/graph/default_device.h"
    #include "tensorflow/core/graph/graph_def_builder.h"
     
    #include "tensorflow/core/lib/core/errors.h"
    #include "tensorflow/core/lib/core/stringpiece.h"
    #include "tensorflow/core/lib/core/threadpool.h"
    #include "tensorflow/core/lib/io/path.h"
    #include "tensorflow/core/lib/strings/stringprintf.h"
     
    #include "tensorflow/core/public/session.h"
    #include "tensorflow/core/util/command_line_flags.h"
     
    #include "tensorflow/core/platform/env.h"
    #include "tensorflow/core/platform/init_main.h"
    #include "tensorflow/core/platform/logging.h"
    #include "tensorflow/core/platform/types.h"
     
    #include "opencv2/opencv.hpp"
     
    using namespace tensorflow::ops;
    using namespace tensorflow;
    using namespace std;
    using namespace cv;
    using tensorflow::Flag;
    using tensorflow::Tensor;
    using tensorflow::Status;
    using tensorflow::string;
    using tensorflow::int32 ;
     
    // 定义一个函数讲OpenCV的Mat数据转化为tensor,python里面只要对cv2.read读进来的矩阵进行np.reshape之后,
    // 数据类型就成了一个tensor,即tensor与矩阵一样,然后就可以输入到网络的入口了,但是C++版本,我们网络开放的入口
    // 也需要将输入图片转化成一个tensor,所以如果用OpenCV读取图片的话,就是一个Mat,然后就要考虑怎么将Mat转化为
    // Tensor了
    void CVMat_to_Tensor(Mat img,Tensor* output_tensor,int input_rows,int input_cols)
    {
        //imshow("input image",img);
        //图像进行resize处理
        resize(img,img,cv::Size(input_cols,input_rows));
        //imshow("resized image",img);
     
        //归一化
        img.convertTo(img,CV_32FC1);
        img=1-img/255;
     
        //创建一个指向tensor的内容的指针
        float *p = output_tensor->flat<float>().data();
     
        //创建一个Mat,与tensor的指针绑定,改变这个Mat的值,就相当于改变tensor的值
        cv::Mat tempMat(input_rows, input_cols, CV_32FC1, p);
        img.convertTo(tempMat,CV_32FC1);
     
    //    waitKey(0);
     
    }
     
    int main(int argc, char** argv )
    {
        /*--------------------------------配置关键信息------------------------------*/
        string model_path="../inception_v3_2016_08_28_frozen.pb";
        string image_path="../test.jpg";
        int input_height =299;
        int input_width=299;
        string input_tensor_name="input";
        string output_tensor_name="InceptionV3/Predictions/Reshape_1";
     
        /*--------------------------------创建session------------------------------*/
        Session* session;
        Status status = NewSession(SessionOptions(), &session);//创建新会话Session
     
        /*--------------------------------从pb文件中读取模型--------------------------------*/
        GraphDef graphdef; //Graph Definition for current model
     
        Status status_load = ReadBinaryProto(Env::Default(), model_path, &graphdef); //从pb文件中读取图模型;
        if (!status_load.ok()) {
            cout << "ERROR: Loading model failed..." << model_path << std::endl;
            cout << status_load.ToString() << "
    ";
            return -1;
        }
        Status status_create = session->Create(graphdef); //将模型导入会话Session中;
        if (!status_create.ok()) {
            cout << "ERROR: Creating graph in session failed..." << status_create.ToString() << std::endl;
            return -1;
        }
        cout << "<----Successfully created session and load graph.------->"<< endl;
     
        /*---------------------------------载入测试图片-------------------------------------*/
        cout<<endl<<"<------------loading test_image-------------->"<<endl;
        Mat img=imread(image_path,0);
        if(img.empty())
        {
            cout<<"can't open the image!!!!!!!"<<endl;
            return -1;
        }
     
        //创建一个tensor作为输入网络的接口
        Tensor resized_tensor(DT_FLOAT, TensorShape({1,input_height,input_width,3}));
     
        //将Opencv的Mat格式的图片存入tensor
        CVMat_to_Tensor(img,&resized_tensor,input_height,input_width);
     
        cout << resized_tensor.DebugString()<<endl;
     
        /*-----------------------------------用网络进行测试-----------------------------------------*/
        cout<<endl<<"<-------------Running the model with test_image--------------->"<<endl;
        //前向运行,输出结果一定是一个tensor的vector
        vector<tensorflow::Tensor> outputs;
        string output_node = output_tensor_name;
        Status status_run = session->Run({{input_tensor_name, resized_tensor}}, {output_node}, {}, &outputs);
     
        if (!status_run.ok()) {
            cout << "ERROR: RUN failed..."  << std::endl;
            cout << status_run.ToString() << "
    ";
            return -1;
        }
        //把输出值给提取出来
        cout << "Output tensor size:" << outputs.size() << std::endl;
        for (std::size_t i = 0; i < outputs.size(); i++) {
            cout << outputs[i].DebugString()<<endl;
        }
     
        Tensor t = outputs[0];                   // Fetch the first tensor
        auto tmap = t.tensor<float, 2>();        // Tensor Shape: [batch_size, target_class_num]
        int output_dim = t.shape().dim_size(1);  // Get the target_class_num from 1st dimension
     
        // Argmax: Get Final Prediction Label and Probability
        int output_class_id = -1;
        double output_prob = 0.0;
        for (int j = 0; j < output_dim; j++)
        {
            cout << "Class " << j << " prob:" << tmap(0, j) << "," << std::endl;
            if (tmap(0, j) >= output_prob) {
                output_class_id = j;
                output_prob = tmap(0, j);
            }
        }
     
        // 输出结果
        cout << "Final class id: " << output_class_id << std::endl;
        cout << "Final class prob: " << output_prob << std::endl;
     
        return 0;
    }
  • 相关阅读:
    武器排序HDU3293:sort
    sata硬盘id
    root sysroot chroot rootfs解析
    软件版本周期
    shell字符串的截取的问题
    游戏脚本
    udevadm使用
    vfat linux 大小写问题
    vmware 虚拟机性能优化
    日期被修改
  • 原文地址:https://www.cnblogs.com/cnugis/p/11507872.html
Copyright © 2020-2023  润新知