• tensorflow C++接口调用目标检测pb模型代码


    #include <iostream>
     
    #include "tensorflow/cc/ops/const_op.h"
    #include "tensorflow/cc/ops/image_ops.h"
    #include "tensorflow/cc/ops/standard_ops.h"
    #include "tensorflow/core/framework/graph.pb.h"
    #include "tensorflow/core/framework/tensor.h"
    #include "tensorflow/core/graph/default_device.h"
    #include "tensorflow/core/graph/graph_def_builder.h"
    #include "tensorflow/core/lib/core/errors.h"
    #include "tensorflow/core/lib/core/stringpiece.h"
    #include "tensorflow/core/lib/core/threadpool.h"
    #include "tensorflow/core/lib/io/path.h"
    #include "tensorflow/core/lib/strings/stringprintf.h"
    #include "tensorflow/core/platform/env.h"
    #include "tensorflow/core/platform/init_main.h"
    #include "tensorflow/core/platform/logging.h"
    #include "tensorflow/core/platform/types.h"
    #include "tensorflow/core/public/session.h"
    #include "tensorflow/core/util/command_line_flags.h"
     
    #include <opencv2/opencv.hpp>
    #include <cv.h>
    #include <highgui.h>
    #include <Eigen/Core>
    #include <Eigen/Dense>
     
    using namespace std;
    using namespace cv;
    using namespace tensorflow;
     
     
     
    // 定义一个函数讲OpenCV的Mat数据转化为tensor,python里面只要对cv2.read读进来的矩阵进行np.reshape之后,
    // 数据类型就成了一个tensor,即tensor与矩阵一样,然后就可以输入到网络的入口了,但是C++版本,我们网络开放的入口
    // 也需要将输入图片转化成一个tensor,所以如果用OpenCV读取图片的话,就是一个Mat,然后就要考虑怎么将Mat转化为
    // Tensor了
    void CVMat_to_Tensor(Mat img,Tensor* output_tensor,int input_rows,int input_cols)
    {
        //imshow("input image",img);
        //图像进行resize处理
        resize(img,img,cv::Size(input_cols,input_rows));
        //imshow("resized image",img);
     
        //归一化
        img.convertTo(img,CV_8UC3);  // CV_32FC3
        //img=1-img/255;
     
        //创建一个指向tensor的内容的指针
        uint8 *p = output_tensor->flat<uint8>().data();
     
        //创建一个Mat,与tensor的指针绑定,改变这个Mat的值,就相当于改变tensor的值
        cv::Mat tempMat(input_rows, input_cols, CV_8UC3, p);
        img.convertTo(tempMat,CV_8UC3);
     
     //    waitKey(0);
     
    }
     
    int main()
    {
        /*--------------------------------配置关键信息------------------------------*/
        string model_path="../model/coco.pb";
        string image_path="../test.jpg";
        int input_height = 1000;
        int input_width = 1000;
        string input_tensor_name="image_tensor";
        vector<string> out_put_nodes;  //注意,在object detection中输出的三个节点名称为以下三个
        out_put_nodes.push_back("detection_scores");  //detection_scores  detection_classes  detection_boxes
        out_put_nodes.push_back("detection_classes");
        out_put_nodes.push_back("detection_boxes");
     
        /*--------------------------------创建session------------------------------*/
        Session* session;
        Status status = NewSession(SessionOptions(), &session);//创建新会话Session
     
        /*--------------------------------从pb文件中读取模型--------------------------------*/
        GraphDef graphdef; //Graph Definition for current model
     
        Status status_load = ReadBinaryProto(Env::Default(), model_path, &graphdef); //从pb文件中读取图模型;
        if (!status_load.ok()) {
            cout << "ERROR: Loading model failed..." << model_path << std::endl;
            cout << status_load.ToString() << "
    ";
            return -1;
        }
        Status status_create = session->Create(graphdef); //将模型导入会话Session中;
        if (!status_create.ok()) {
            cout << "ERROR: Creating graph in session failed..." << status_create.ToString() << std::endl;
            return -1;
        }
        cout << "<----Successfully created session and load graph.------->"<< endl;
     
        /*---------------------------------载入测试图片-------------------------------------*/
        cout<<endl<<"<------------loading test_image-------------->"<<endl;
        Mat img;
        img = imread(image_path);
        cvtColor(img, img, CV_BGR2RGB);
        if(img.empty())
        {
            cout<<"can't open the image!!!!!!!"<<endl;
            return -1;
        }
     
        //创建一个tensor作为输入网络的接口
        Tensor resized_tensor(DT_UINT8, TensorShape({1,input_height,input_width,3})); //DT_FLOAT
     
        //将Opencv的Mat格式的图片存入tensor
        CVMat_to_Tensor(img,&resized_tensor,input_height,input_width);
     
        cout << resized_tensor.DebugString()<<endl;
     
        /*-----------------------------------用网络进行测试-----------------------------------------*/
        cout<<endl<<"<-------------Running the model with test_image--------------->"<<endl;
        //前向运行,输出结果一定是一个tensor的vector
        vector<tensorflow::Tensor> outputs;
     
        Status status_run = session->Run({{input_tensor_name, resized_tensor}}, {out_put_nodes}, {}, &outputs);
     
        if (!status_run.ok()) {
            cout << "ERROR: RUN failed..."  << std::endl;
            cout << status_run.ToString() << "
    ";
            return -1;
        }
     
        //把输出值给提取出
        cout << "Output tensor size:" << outputs.size() << std::endl;  //3
        for (int i = 0; i < outputs.size(); i++)
        {
            cout << outputs[i].DebugString()<<endl;   // [1, 50], [1, 50], [1, 50, 4]
        }
     
        cvtColor(img, img, CV_RGB2BGR);  // opencv读入的是BGR格式输入网络前转为RGB
        resize(img,img,cv::Size(1000,1000));  // 模型输入图像大小
        int pre_num = outputs[0].dim_size(1);  // 50  模型预测的目标数量
        auto tmap_pro = outputs[0].tensor<float, 2>();  //第一个是score输出shape为[1,50]
        auto tmap_clas = outputs[1].tensor<float, 2>();  //第二个是class输出shape为[1,50]
        auto tmap_coor = outputs[2].tensor<float, 3>();  //第三个是coordinate输出shape为[1,50,4]
        float probability = 0.5;  //自己设定的score阈值
        for (int pre_i = 0; pre_i < pre_num; pre_i++)
        {
            if (tmap_pro(0, pre_i) < probability)
            {
                break;
            }
            cout << "Class ID: " << tmap_clas(0, pre_i) << endl;
            cout << "Probability: " << tmap_pro(0, pre_i) << endl;
            string id = to_string(int(tmap_clas(0, pre_i)));
            int xmin = int(tmap_coor(0, pre_i, 1) * input_width);
            int ymin = int(tmap_coor(0, pre_i, 0) * input_height);
            int xmax = int(tmap_coor(0, pre_i, 3) * input_width);
            int ymax = int(tmap_coor(0, pre_i, 2) * input_height);
            cout << "Xmin is: " << xmin << endl;
            cout << "Ymin is: " << ymin << endl;
            cout << "Xmax is: " << xmax << endl;
            cout << "Ymax is: " << ymax << endl;
            rectangle(img, cvPoint(xmin, ymin), cvPoint(xmax, ymax), Scalar(255, 0, 0), 1, 1, 0);
            putText(img, id, cvPoint(xmin, ymin), FONT_HERSHEY_COMPLEX, 1.0, Scalar(255,0,0), 1);
        }
        imshow("1", img);
        cvWaitKey(0);
     
        return 0;
    }

    CMakeLists.txt内容如下

    cmake_minimum_required(VERSION 3.0.0)
    project(tensorflow_cpp)
     
    set(CMAKE_CXX_STANDARD 11)
     
    find_package(OpenCV 3.0 QUIET)
    if(NOT OpenCV_FOUND)
        find_package(OpenCV 2.4.3 QUIET)
        if(NOT OpenCV_FOUND)
            message(FATAL_ERROR "OpenCV > 2.4.3 not found.")
        endif()
    endif()
     
    set(TENSORFLOW_INCLUDES
            /usr/local/include/tf/
            /usr/local/include/tf/bazel-genfiles
            /usr/local/include/tf/tensorflow/
            /usr/local/include/tf/tensorflow/third_party)
     
    set(TENSORFLOW_LIBS
            /usr/local/lib/libtensorflow_cc.so
            /usr/local/lib//libtensorflow_framework.so)
     
     
    include_directories(
            ${TENSORFLOW_INCLUDES}
            ${PROJECT_SOURCE_DIR}/third_party/eigen3
    )
    add_executable(predict predict.cpp)
    target_link_libraries(predict
            ${TENSORFLOW_LIBS}
            ${OpenCV_LIBS}
            )

    目录结构如图所示

  • 相关阅读:
    Android应用视觉效果设计技巧
    Android实现图片缩放与旋转
    schema 对象的简单介绍
    Index Scans 索引扫描
    Oracle Database Transaction Isolation Levels 事务隔离级别
    第一篇博客,纪念一下,终于开通啦!
    Linux 开机引导流程
    springBoot中tomcat默认端口修改
    面向服务架构之RPC原理与实例
    vs2008中xlslib与libxls库的编译及使用
  • 原文地址:https://www.cnblogs.com/cnugis/p/11506767.html
Copyright © 2020-2023  润新知