• Python opencv计算批量图片的BGR各自的均值


    #coding:utf-8
    
    #第一种方式 很慢很慢 自己写的如何计算均值
    '''
    import cv2
    import os
    def access_pixels(frame):
        print(frame.shape)  #shape内包含三个元素:按顺序为高、宽、通道数
        height = frame.shape[0]
        weight = frame.shape[1]
        channels = frame.shape[2]
        value_b = 0
        value_g = 0
        value_r = 0
        print("weight : %s, height : %s, channel : %s" %(weight, height, channels))    
        for row in range(height):            #遍历高
            for col in range(weight):         #遍历宽
                value_b = value_b + frame[row, col, 0]
                value_g = value_g + frame[row, col, 1]
                value_r = value_r + frame[row, col, 2]
        singlePicValue_b = value_b / (height * weight)
        singlePicValue_g = value_g / (height * weight)
        singlePicValue_r = value_r / (height * weight)
        return singlePicValue_b,singlePicValue_g,singlePicValue_r
        
    def computeMeanValue(path):
        imgList1 = os.listdir(path)
        mean_b = 0
        mean_g = 0
        mean_r = 0
        for i in range(len(imgList1)):
            srcframe = cv2.imread(os.path.join(path,imgList1[i])) 
            singlePicValue_b,singlePicValue_g,singlePicValue_r = access_pixels(srcframe)
            mean_b = mean_b + singlePicValue_b 
            mean_g = mean_g + singlePicValue_g
            mean_r = mean_r + singlePicValue_r
        all_mean_b = mean_b / len(imgList1)
        all_mean_g = mean_g / len(imgList1)
        all_mean_r = mean_r / len(imgList1)
        print (i)
        return all_mean_b,all_mean_g,all_mean_r
    
    all_mean_b,all_mean_g,all_mean_r = computeMeanValue('./spinningData/src')
    print (all_mean_b,all_mean_g,all_mean_r)
    '''
    
    #第二种方式  借助numpy  很快 几秒
    import os
    import cv2
    import numpy as np 
    path = './spinningData/src'
    def compute(path):
        file_names = os.listdir(path)
        per_image_Rmean = []
        per_image_Gmean = []
        per_image_Bmean = []
        for file_name in file_names:
            img = cv2.imread(os.path.join(path, file_name), 1)
            per_image_Bmean.append(np.mean(img[:,:,0]))
            per_image_Gmean.append(np.mean(img[:,:,1]))
            per_image_Rmean.append(np.mean(img[:,:,2]))
        R_mean = np.mean(per_image_Rmean)
        G_mean = np.mean(per_image_Gmean)
        B_mean = np.mean(per_image_Bmean)
        return R_mean, G_mean, B_mean
     
    if __name__ == '__main__':
        R, G, B= compute(path)
        print(R, G ,B)
    
  • 相关阅读:
    jQuery-File-Upload文件上传
    JavaScript探秘:强大的原型和原型链
    JavaScript 开发进阶:理解 JavaScript 作用域和作用域链
    前端开发面试题及答案
    JSP页面
    XMLHTTP.readyState的五种状态
    HTTP: The Protocol Every Web Developer Must Know
    W3C-Web Service
    H5教程
    PHP 页面编码声明方法(header或meta)
  • 原文地址:https://www.cnblogs.com/cnugis/p/11220432.html
Copyright © 2020-2023  润新知