• [LeetCode] 669. Trim a Binary Search Tree


    Given the root of a binary search tree and the lowest and highest boundaries as low and high, trim the tree so that all its elements lies in [low, high]. Trimming the tree should not change the relative structure of the elements that will remain in the tree (i.e., any node's descendant should remain a descendant). It can be proven that there is a unique answer.

    Return the root of the trimmed binary search tree. Note that the root may change depending on the given bounds.

    Example 1:

    Input: root = [1,0,2], low = 1, high = 2
    Output: [1,null,2]
    

    Example 2:

    Input: root = [3,0,4,null,2,null,null,1], low = 1, high = 3
    Output: [3,2,null,1]
    

    Example 3:

    Input: root = [1], low = 1, high = 2
    Output: [1]
    

    Example 4:

    Input: root = [1,null,2], low = 1, high = 3
    Output: [1,null,2]
    

    Example 5:

    Input: root = [1,null,2], low = 2, high = 4
    Output: [2]

    Constraints:

    • The number of nodes in the tree in the range [1, 104].
    • 0 <= Node.val <= 104
    • The value of each node in the tree is unique.
    • root is guaranteed to be a valid binary search tree.
    • 0 <= low <= high <= 104

    修剪二叉搜索树。

    给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树不应该改变保留在树中的元素的相对结构(即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在唯一的答案。

    所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。

    来源:力扣(LeetCode)
    链接:https://leetcode-cn.com/problems/trim-a-binary-search-tree
    著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

    思路是递归。题意是给了low和high两个边界,请你去掉BST中节点值不在这个范围内的节点但是保持其他节点的相对关系。思路大概是如下几点

    如果root为空,就返回root

    如果root不为空且root.val < low则去看右子树

    如果root不为空且root.val > high则去看左子树

    递归地去检查root的左孩子和右孩子

    时间O(n)

    空间O(n)

    Java实现

     1 /**
     2  * Definition for a binary tree node.
     3  * public class TreeNode {
     4  *     int val;
     5  *     TreeNode left;
     6  *     TreeNode right;
     7  *     TreeNode() {}
     8  *     TreeNode(int val) { this.val = val; }
     9  *     TreeNode(int val, TreeNode left, TreeNode right) {
    10  *         this.val = val;
    11  *         this.left = left;
    12  *         this.right = right;
    13  *     }
    14  * }
    15  */
    16 class Solution {
    17     public TreeNode trimBST(TreeNode root, int low, int high) {
    18         // corner case
    19         if (root == null) {
    20             return null;
    21         }
    22         if (root.val < low) {
    23             return trimBST(root.right, low, high);
    24         }
    25         if (root.val > high) {
    26             return trimBST(root.left, low, high);
    27         }
    28         root.left = trimBST(root.left, low, high);
    29         root.right = trimBST(root.right, low, high);
    30         return root;
    31     }
    32 }

    JavaScript实现

     1 /**
     2  * Definition for a binary tree node.
     3  * function TreeNode(val, left, right) {
     4  *     this.val = (val===undefined ? 0 : val)
     5  *     this.left = (left===undefined ? null : left)
     6  *     this.right = (right===undefined ? null : right)
     7  * }
     8  */
     9 /**
    10  * @param {TreeNode} root
    11  * @param {number} low
    12  * @param {number} high
    13  * @return {TreeNode}
    14  */
    15 var trimBST = function (root, low, high) {
    16     // corner case
    17     if (root === null) {
    18         return null;
    19     }
    20     if (root.val < low) {
    21         return trimBST(root.right, low, high);
    22     }
    23     if (root.val > high) {
    24         return trimBST(root.left, low, high);
    25     }
    26     root.left = trimBST(root.left, low, high);
    27     root.right = trimBST(root.right, low, high);
    28     return root;
    29 };

    LeetCode 题目总结

  • 相关阅读:
    Allegro PCB转换成PADS方法
    Altium Designer只显示某一层,隐藏其他层
    DCDC功率电感(Inductor)选型
    DDR布线教程
    DDR地址、容量计算、Bank理解
    DDR3中的ODT(On-die termination)
    LINUX文件系统操作指令之四
    linux系统之间通过nfs网络文件系统挂载设置方法
    linux消息队列编程实例
    system()函数
  • 原文地址:https://www.cnblogs.com/cnoodle/p/14367626.html
Copyright © 2020-2023  润新知