• [LeetCode] 1605. Find Valid Matrix Given Row and Column Sums


    You are given two arrays rowSum and colSum of non-negative integers where rowSum[i] is the sum of the elements in the ith row and colSum[j] is the sum of the elements of the jth column of a 2D matrix. In other words, you do not know the elements of the matrix, but you do know the sums of each row and column.

    Find any matrix of non-negative integers of size rowSum.length x colSum.length that satisfies the rowSum and colSum requirements.

    Return a 2D array representing any matrix that fulfills the requirements. It's guaranteed that at least one matrix that fulfills the requirements exists.

    Example 1:

    Input: rowSum = [3,8], colSum = [4,7]
    Output: [[3,0],
             [1,7]]
    Explanation:
    0th row: 3 + 0 = 0 == rowSum[0]
    1st row: 1 + 7 = 8 == rowSum[1]
    0th column: 3 + 1 = 4 == colSum[0]
    1st column: 0 + 7 = 7 == colSum[1]
    The row and column sums match, and all matrix elements are non-negative.
    Another possible matrix is: [[1,2],
                                 [3,5]]
    

    Example 2:

    Input: rowSum = [5,7,10], colSum = [8,6,8]
    Output: [[0,5,0],
             [6,1,0],
             [2,0,8]]
    

    Example 3:

    Input: rowSum = [14,9], colSum = [6,9,8]
    Output: [[0,9,5],
             [6,0,3]]
    

    Example 4:

    Input: rowSum = [1,0], colSum = [1]
    Output: [[1],
             [0]]
    

    Example 5:

    Input: rowSum = [0], colSum = [0]
    Output: [[0]]

    Constraints:

    • 1 <= rowSum.length, colSum.length <= 500
    • 0 <= rowSum[i], colSum[i] <= 108
    • sum(rows) == sum(columns)

    给定行和列的和求可行矩阵。

    给你两个非负整数数组 rowSum 和 colSum ,其中 rowSum[i] 是二维矩阵中第 i 行元素的和, colSum[j] 是第 j 列元素的和。换言之你不知道矩阵里的每个元素,但是你知道每一行和每一列的和。

    请找到大小为 rowSum.length x colSum.length 的任意 非负整数 矩阵,且该矩阵满足 rowSum 和 colSum 的要求。

    请你返回任意一个满足题目要求的二维矩阵,题目保证存在 至少一个 可行矩阵。

    来源:力扣(LeetCode)
    链接:https://leetcode-cn.com/problems/find-valid-matrix-given-row-and-column-sums
    著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

    思路是贪心。这道题跟1253题差不多但是个人感觉稍微难一点,尤其是证明贪心的正确性会是个难点。

    我们首先创建一个二维数组 int[][] res 记录最后的结果,res的尺寸是 [rowSum.length][colSum.length]。接着我们遍历这个二维数组,对于每一个位置上的元素,我们写入 rowSum[i] 和 colSum[j] 的较小值,同时需要在 rowSum[i] 和 colSum[j]里面减去这个较小值。

    证明:对于每一个位置 res[i][j],我们一开始写入 Math.min(rowSum[i], colSum[j]) 应该没有什么疑问,这样操作之后,会使得 rowSum[i], colSum[j] 之中有一个变成0。如此操作直到最后一个位置上的时候,理应让 sum(rows) 和 sum(columns) 都变成0。

    时间O(m + n)

    空间O(mn)

    Java实现

     1 class Solution {
     2     public int[][] restoreMatrix(int[] rowSum, int[] colSum) {
     3         int m = rowSum.length;
     4         int n = colSum.length;
     5         int[][] res = new int[m][n];
     6         for (int i = 0; i < m; i++) {
     7             for (int j = 0; j < n; j++) {
     8                 res[i][j] = Math.min(rowSum[i], colSum[j]);
     9                 rowSum[i] -= res[i][j];
    10                 colSum[j] -= res[i][j];
    11             }
    12         }
    13         return res;
    14     }
    15 }

    相关题目

    1253. Reconstruct a 2-Row Binary Matrix

    1605. Find Valid Matrix Given Row and Column Sums

    LeetCode 题目总结

  • 相关阅读:
    java web 初学
    学习2
    学习
    上课
    Java中字母大小写的转换
    心得体会
    servlet请求
    响应设置消息体
    servlet响应-头部信息的设置
    servlet的响应(一)
  • 原文地址:https://www.cnblogs.com/cnoodle/p/14191368.html
Copyright © 2020-2023  润新知