• [LeetCode] 1059. All Paths from Source Lead to Destination


    Given the edges of a directed graph, and two nodes source and destination of this graph, determine whether or not all paths starting from source eventually end at destination, that is:

    • At least one path exists from the source node to the destination node
    • If a path exists from the source node to a node with no outgoing edges, then that node is equal to destination.
    • The number of possible paths from source to destination is a finite number.

    Return true if and only if all roads from source lead to destination.

    Example 1:

    Input: n = 3, edges = [[0,1],[0,2]], source = 0, destination = 2
    Output: false
    Explanation: It is possible to reach and get stuck on both node 1 and node 2.
    

    Example 2:

    Input: n = 4, edges = [[0,1],[0,3],[1,2],[2,1]], source = 0, destination = 3
    Output: false
    Explanation: We have two possibilities: to end at node 3, or to loop over node 1 and node 2 indefinitely.
    

    Example 3:

    Input: n = 4, edges = [[0,1],[0,2],[1,3],[2,3]], source = 0, destination = 3
    Output: true
    

    Example 4:

    Input: n = 3, edges = [[0,1],[1,1],[1,2]], source = 0, destination = 2
    Output: false
    Explanation: All paths from the source node end at the destination node, but there are an infinite number of paths, 
    such as 0-1-2, 0-1-1-2, 0-1-1-1-2, 0-1-1-1-1-2, and so on.

    Example 5:

    Input: n = 2, edges = [[0,1],[1,1]], source = 0, destination = 1
    Output: false
    Explanation: There is infinite self-loop at destination node.
    

    Note:

    1. The given graph may have self loops and parallel edges.
    2. The number of nodes n in the graph is between 1 and 10000
    3. The number of edges in the graph is between 0 and 10000
    4. 0 <= edges.length <= 10000
    5. edges[i].length == 2
    6. 0 <= source <= n - 1
    7. 0 <= destination <= n - 1

    从始点到终点的所有路径。

    给定有向图的边 edges,以及该图的始点 source 和目标终点 destination,确定从始点 source 出发的所有路径是否最终结束于目标终点 destination,即:

    • 从始点 source 到目标终点 destination 存在至少一条路径
    • 如果存在从始点 source 到没有出边的节点的路径,则该节点就是路径终点。
    • 从始点source到目标终点 destination 可能路径数是有限数字
    • 当从始点 source 出发的所有路径都可以到达目标终点 destination 时返回 true,否则返回 false。

    来源:力扣(LeetCode)
    链接:https://leetcode-cn.com/problems/all-paths-from-source-lead-to-destination
    著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

    这是一道有向图的题。题目的意思解释的很清楚,给了起点,终点,所有的边,请你判断是不是所有从起点开始的边都能带你去到终点。

    遇到图的题,绝大部分还是先创建图,再用DFS或者BFS去遍历。这个题需要注意的点是

    • 当遇到一个终点(这个点没有next节点),判断这个点是不是 destination
      • hashmap的做法是判断这个点在 hashmap 里是否能找到,如果找不到,就判断他不是destination;或者说这条路径不在起点 - 终点的路径上
    • 判断图中是否有环 - 用hashset判断是否访问过或者用染色法
      • 当遍历当前点的邻居们的时候,如果发现任何一个邻居已经在 hashset 存在了,则发现了环,return false。
      • 判断环是因为如果有环的话那说明一定有某条路径不在起点 - 终点的路径上

    思路不难想,代码的实现需要多练,面试才会写的6。

    时间O(V + E)

    空间O(V + E)

    Java实现 - hashmap建图

     1 class Solution {
     2     public boolean leadsToDestination(int n, int[][] edges, int source, int destination) {
     3         // build the graph
     4         HashMap<Integer, List<Integer>> graph = new HashMap<>();
     5         for (int[] edge : edges) {
     6             graph.putIfAbsent(edge[0], new ArrayList<>());
     7             graph.get(edge[0]).add(edge[1]);
     8         }
     9         return helper(graph, new HashSet<>(), source, destination);
    10     }
    11 
    12     private boolean helper(Map<Integer, List<Integer>> graph, Set<Integer> visited, int cur, int end) {
    13         // base case
    14         if (!graph.containsKey(cur)) {
    15             return cur == end;
    16         }
    17         visited.add(cur);
    18         for (int neighbor : graph.get(cur)) {
    19             if (visited.contains(neighbor) || !helper(graph, visited, neighbor, end)) {
    20                 return false;
    21             }
    22         }
    23         visited.remove(cur);
    24         return true;
    25     }
    26 }

    Java实现 - list建图

     1 class Solution {
     2     public boolean leadsToDestination(int n, int[][] edges, int source, int destination) {
     3         List<Integer>[] graph = new List[n];
     4         int[] colors = new int[n];
     5         buildGraph(graph, edges);
     6         return helper(graph, source, destination, colors);
     7     }
     8 
     9     private void buildGraph(List<Integer>[] graph, int[][] edges) {
    10         for (int[] edge : edges) {
    11             int from = edge[0];
    12             int to = edge[1];
    13             if (graph[from] == null) {
    14                 graph[from] = new LinkedList<>();
    15             }
    16             graph[from].add(to);
    17         }
    18     }
    19 
    20     private boolean helper(List<Integer>[] graph, int source, int destination, int[] colors) {
    21         // base case
    22         if (graph[source] == null || graph[source].size() == 0) {
    23             return source == destination;
    24         }
    25         colors[source] = 1;
    26         for (int next : graph[source]) {
    27             // if visited
    28             if (colors[next] == 1) {
    29                 return false;
    30             }
    31             if (colors[next] == 0 && !helper(graph, next, destination, colors)) {
    32                 return false;
    33             }
    34             colors[source] = 0;
    35         }
    36         return true;
    37     }
    38 }

    LeetCode 题目总结

  • 相关阅读:
    WinPE U盘安装原版Win10系统详细教程
    Foxmail for windows 客户端设置和 IMAP、POP3/SMTP 的设置
    微信打开X5调试,使微信页面可以在谷歌浏览器调试
    古今时辰对照表--选择吉日吉时,养生时辰必看
    2020爱你爱你,新的一年,新的开始,2020我想对你说
    人民日报推荐好文《善待你所在的单位》
    致大学生,我把私藏多年的的实用工具/学习网站都贡献出来了~~
    使用poco 的NetSSL_OpenSSL 搭建https 服务端,使用C++客户端,java 客户端访问,python访问(python还没找到带证书访问的代码.)
    C++ activemq CMS 学习笔记.
    关于 Poco::TCPServer框架 (windows 下使用的是 select模型) 学习笔记.
  • 原文地址:https://www.cnblogs.com/cnoodle/p/13375378.html
Copyright © 2020-2023  润新知