大菲波数
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17183 Accepted Submission(s): 5708
Problem Description
Fibonacci数列,定义如下:
f(1)=f(2)=1
f(n)=f(n-1)+f(n-2) n>=3。
计算第n项Fibonacci数值。
f(1)=f(2)=1
f(n)=f(n-1)+f(n-2) n>=3。
计算第n项Fibonacci数值。
Input
输入第一行为一个整数N,接下来N行为整数Pi(1<=Pi<=1000)。
Output
输出为N行,每行为对应的f(Pi)。
Sample Input
5 1 2 3 4 5
Sample Output
1 1 2 3 5
Source
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <queue> #include <stack> #include <iostream> #define MAX_N 1005 #define MAX(a, b) (a > b)? a: b #define MIN(a, b) (a < b)? a: b using namespace std; int fib[MAX_N][MAX_N]; void init() { fib[1][0] = 1, fib [2][0] = 1; for (int i = 3; i < 1001; i++) { int p = 0, q = 0; for (int j = 0; j < 550; j++) { p = fib[i - 1][j] + fib[i - 2][j] + q; fib[i][j] = p%10; q = p/10; } } } int main() { int t, n, i; init(); scanf("%d", &t); while (t--) { scanf("%d", &n); for (i = 550; i >= 0; i--) { if (fib[n][i] != 0) break; } for (; i >= 0; i--) { printf("%d", fib[n][i]); } printf(" "); } return 0; }