• HDU Problem 2199 Can you solve this equation? 【二分】


    Can you solve this equation?

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 16602    Accepted Submission(s): 7371


    Problem Description
    Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,can you find its solution between 0 and 100;
    Now please try your lucky.
     
    Input
    The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10);
     
    Output
    For each test case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100.
     
    Sample Input
    2 100 -4
     
    Sample Output
    1.6152 No solution!
     

    题中说解在0~100之间,所以当输入的值小于x=0时的值大于x=100时候的值是不存在的,其他情况都有解,所以,对于其他情况,直接进行二分。

    #include <cstdio>
    #include <cmath>
    using namespace std;
    
    const double sp = 1e-5;
    double ans(double x) {
        return 8*pow(x, 4.0) + 7*pow(x, 3.0) + 2*pow(x, 2.0) + 3*x + 6;
    }
    
    double lower_bound(double x) {
        double l = 0, r = 100;
        double mid = (l + r)/2;
        while (abs(ans(mid) - x) > sp) {
            mid = (l + r)/2;
            if (ans(mid) > x) {
                r = mid;
            }
            else {
                l = mid;
            }
        }
        return mid;
    }
    int main() {
        int t;
        double n;
        scanf("%d", &t);
        while (t--) {
            scanf("%lf", &n);
            if (n < 6 || n > ans(100.0))
                printf("No solution!
    ");
            else printf("%.4lf
    ", lower_bound(n));
        }
        return 0;
    }
    
    
    
     
  • 相关阅读:
    IE8下部分方法失效的解决方法
    C#获取本机IP地址(ipv4)
    WPF中控制窗口显示位置的三种方式
    JS判断IP的正则表达式
    WPF ListView 简单的拖拽实现(转)
    C# 中取绝对值的函数
    移动端rem单位适配使用
    vue中遇到的坑!!!!!
    vux安装中遇到的坑
    移动端常用的代码
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770906.html
Copyright © 2020-2023  润新知