Can you solve this equation?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 16602 Accepted Submission(s): 7371
Problem Description
Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,can you find its solution between 0 and 100;
Now please try your lucky.
Now please try your lucky.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10);
Output
For each test case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100.
Sample Input
2
100
-4
Sample Output
1.6152
No solution!
题中说解在0~100之间,所以当输入的值小于x=0时的值大于x=100时候的值是不存在的,其他情况都有解,所以,对于其他情况,直接进行二分。
#include <cstdio> #include <cmath> using namespace std; const double sp = 1e-5; double ans(double x) { return 8*pow(x, 4.0) + 7*pow(x, 3.0) + 2*pow(x, 2.0) + 3*x + 6; } double lower_bound(double x) { double l = 0, r = 100; double mid = (l + r)/2; while (abs(ans(mid) - x) > sp) { mid = (l + r)/2; if (ans(mid) > x) { r = mid; } else { l = mid; } } return mid; } int main() { int t; double n; scanf("%d", &t); while (t--) { scanf("%lf", &n); if (n < 6 || n > ans(100.0)) printf("No solution! "); else printf("%.4lf ", lower_bound(n)); } return 0; }