A Simple Math Problem
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4283 Accepted Submission(s): 2573
Problem Description
Lele now is thinking about a simple function f(x).
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
Output
For each case, output f(k) % m in one line.
Sample Input
10 9999
1 1 1 1 1 1 1 1 1 1
20 500
1 0 1 0 1 0 1 0 1 0
Sample Output
45
104
Author
linle
Source
Recommend
这道题算是矩阵算法的一个模板题了,构造矩阵,运用快速幂求解。
#include <map> #include <set> #include <cstdio> #include <cstring> #include <algorithm> #include <queue> #include <iostream> #include <stack> #include <cmath> #include <string> #include <vector> #include <cstdlib> //#include <bits/stdc++.h> //#define LOACL #define space " " using namespace std; typedef long long LL; typedef __int64 Int; typedef pair<int, int> paii; const int INF = 0x3f3f3f3f; const double ESP = 1e-5; const double PI = acos(-1.0); const int MOD = 1e9 + 7; const int MAXN = 100 + 10; int n, mod, m; struct Matrix { LL m[MAXN][MAXN]; int row, col; }; Matrix ori, res, u; void init() { n = 10; memset(res.m, 0, sizeof(res.m)); ori.row = ori.col = n; } void scan_in() { for (int i = 1; i <= n; i++) { scanf("%d", &ori.m[1][i]); } for(int i = 1; i <= n; i++) { ori.m[i][i-1] =1 ; } u.row = n; u.col = 1; for (int i = 1; i <= n; i++) { u.m[n - i + 1][1] = i - 1; } } Matrix multi(Matrix x, Matrix y) { Matrix z; memset(z.m, 0, sizeof(z.m)); z.row = x.row; z.col = y.col; for (int i = 1; i <= x.row; i++) { for (int k = 1; k <= x.col; k++) { for (int j = 1; j <= y.col; j++) { z.m[i][j] += x.m[i][k]*y.m[k][j]%mod; } z.m[i][k] %= mod; } } return z; } Matrix pow_mod(Matrix a, int x){ Matrix b; b.col = a.col; b.row = a.row; memset(b.m, 0, sizeof(b.m)); for (int i = 1; i <= n; i++) { b.m[i][i] = 1; } while(x){ if(x&1) b = multi(a,b); a = multi(a, a); x >>= 1; } return b; } int main() { while (scanf("%d%d", &m, &mod) != EOF) { init(); scan_in(); int ans = 0; if (m < 10) {printf("%d ", m%mod); continue;} res = pow_mod(ori, m - 9); for(int i = 1;i <= 10; i++) { ans += (res.m[1][i]*(10 - i))%mod; } printf("%d ", ans%mod); } return 0; }