• lightoj 1259


    1259 - Goldbach`s Conjecture
    Time Limit: 2 second(s) Memory Limit: 32 MB

    Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:

    Every even integer, greater than 2, can be expressed as the sum of two primes [1].

    Now your task is to check whether this conjecture holds for integers up to 107.

    Input

    Input starts with an integer T (≤ 300), denoting the number of test cases.

    Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).

    Output

    For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where

    1)      Both a and b are prime

    2)      a + b = n

    3)      a ≤ b

    Sample Input

    Output for Sample Input

    2

    6

    4

    Case 1: 1

    Case 2: 1

    Note

    1.      An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...

    题意是问你对于一个n有几对a和b均为素数,并且a+b=n,a<=b
    直接打表判断就好了

    #include <stdio.h>
    const int MAXN = 1e7 + 10;
    int prime[700005];
    bool isprime[MAXN];
    void init() {
        int p = 0;
        for (int i = 0; i < MAXN; i++) isprime[i] = true;
        isprime[0] = isprime[1] = false;
        for (int i = 2; i < MAXN; i++) {
            if (isprime[i]) {
                prime[p++] = i;
                for (int j = 2*i; j < MAXN; j += i) isprime[j] = false;
            }
        }
    }
    int main(int argc, char const *argv[])
    {
        int T;
        init();
        scanf("%d", &T);
        int Kcase = 0;
        while (T--) {
            int N;
            scanf("%d", &N);
            int ans = 0;
            for (int i = 0; 2*prime[i] <= N; i++) {
                if (isprime[N - prime[i]]) ans++;
            }
            printf("%s%d: %d
    ", "Case ", ++Kcase, ans);
        }
        return 0;
    }


  • 相关阅读:
    tomcat 堆内存设置
    Java日历类(GregorianCalendar和Calendar)的简单例子
    oracle中的greatest 函数和 least函数
    极光推送
    oracle的start with connect by prior如何使用
    Eclipse菜单栏中Tomcat 插件的配置
    svn取消关联
    nagios检测http
    python升级
    fabric
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770738.html
Copyright © 2020-2023  润新知