• 【做题】arc078_f-Mole and Abandoned Mine——状压dp


    题意:给出一个(n)个结点的联通无向图,每条边都有边权。令删去一条边的费用为这条边的边权。求最小的费用以删去某些边使得结点(1)至结点(n)有且只有一条路径。

    (n leq 15)

    不难想象出,删去边后所得的图形中,在(1)(n)的路径上的每一条边都是桥。换言之,每一条边都连接两个边双联通分量。 (n leq 15)的数据范围显然与状压dp有关,于是我们考虑枚举下一个边双联通分量来完成dp转移,以不断铺设从(1)(n)的路径。

    令dp状态为dp[S,cur],其中(S)为当前已被选的点的集合,且(1)(n)的路径以铺设到(cur)。那么,我们的转移就是铺设下一个结点,或新增一个包含(cur)的边双(不包含(S)中的其他结点)。这样,如果记两个集合(S)(T) 之间所有边的和为co[S,T],我们就能得到转移方程:

    • [{ m{dp}}[S igcup { u },u] = { m dp}[S,cur] +{ m co}[{ u },S - { cur }] ]

    • [{ m dp}[S igcup T,cur] = { m dp} [S,cur] + { m co}[T,S - { cur }] ]

    复杂度是(O(n imes 3^n))

    上面的转移是从题解上抄来的(划。它与直接枚举下一个边双和路径上的结点的做法相比,复杂度上更优越。(后者的复杂度是(O(n^2 imes 3^n))

    顺便一提,co所占用的空间是(O(3^n))的,并且在dp时要注意第一条方程中(u)(cur)必须相邻。

    #include <bits/stdc++.h>
    #define lowbit(x) ((x) & (- (x)))
    #define rev(x) (((1 << n) - 1) ^ x)
    #define R register
    using namespace std;
    const int N = 15, MAX = 1 << 15, MAX3 = 14348907, INF = 0x3f3f3f3f;
    int n,m,su[N+2][MAX],dp[MAX][N + 2],trans[MAX],co[MAX3];
    int main() {
      int x,y,z;
      scanf("%d%d",&n,&m);
      for (int i = 1 ; i <= m ; ++ i) {
        scanf("%d%d%d",&x,&y,&z);
        su[x][1 << y >> 1] += z;
        su[y][1 << x >> 1] += z;
      }
      for (int i = 1 ; i <= n ; ++ i)
        for (R int j = 1 ; j < (1 << n) ; ++ j)
          su[i][j] = su[i][j - lowbit(j)] + su[i][lowbit(j)];
      for (R int i = 1 ; i < (1 << n) ; ++ i) {
        for (int j = 1, t = 1 ; j <= n ; ++ j, t *= 3) 
          if ((i >> j-1)&1) trans[i] += t;
      }
      for (R int i = 1 ; i < (1 << n) ; ++ i)
        for (R int j = rev(i) ; j ; j = (j-1)&rev(i)) {
          int t = trans[i] + 2 * trans[j];
          for (int k = 1 ; k <= n ; ++ k)
            if ((i >> k-1)&1) co[t] += su[k][j];
        }
      memset(dp,0x3f,sizeof dp);
      dp[1][1] = 0;
      for (R int i = 1 ; i < (1 << n) ; ++ i) {
        for (int j = 1 ; j <= n ; ++ j) if ((i >> j-1)&1) {
          if (dp[i][j] == INF) continue;
          for (R int k = rev(i) ; k ; k = (k-1)&rev(i)) if (su[j][k] > 0)
            dp[i | k][j] = min(dp[i|k][j],dp[i][j]+co[trans[i^(1<<j>>1)]+2*trans[k]]);
          if ((i >> n-1)&1) continue;
          for (int k = 1 ; k <= n ; ++ k) if (!((i >> k-1)&1)) if (su[k][1<<j>>1] > 0)
            dp[i|(1<<k>>1)][k] = min(dp[i|(1<<k>>1)][k],dp[i][j]+su[k][i^(1<<j>>1)]);
        }
      }
      printf("%d
    ",dp[(1 << n) - 1][n]);
      return 0;
    }
    

    小结:在dp转移时把一步拆成两步,是可以减小复杂度的。

  • 相关阅读:
    Python 之 raw_input()与input()区别
    Python基础语法
    在Cloudera Hadoop CDH上安装R及RHadoop(rhdfs、rmr2、rhbase、RHive)
    MapReduce 过程详解
    Cloudera Manager and CDH安装及配置
    RFC 目录
    聊一聊 tcp拥塞控制 九 fack
    聊一聊tcp 拥塞控制 八 相关数据结构&& 概念
    聊一聊 tcp 拥塞控制 七 转载
    udp connected socket
  • 原文地址:https://www.cnblogs.com/cly-none/p/9231150.html
Copyright © 2020-2023  润新知