• BZOJ3424 : Poi2013 Multidrink


    详细做法以及证明请看论文《Hamiltonian paths in the square of a tree》

    首先将1到n的路径提取出来,作为主干。

    定义毛毛虫为去掉叶子之后只有一条单链的树,定义non-trivial的毛毛虫为单链非空的毛毛虫。

    对于主干上每个点,计算它的非主干部分是否是毛毛虫,如果某个部分不是毛毛虫,那么肯定无解。

    将主干上每个点划分为两类:

    A:non-trivial的毛毛虫不超过1个。

    B:non-trivial的毛毛虫恰有两个。

    同时定义一个点是free的当且仅当它是单点。

    如下图:

    判断一下是否每对相邻的B类点中间都有free点,且所有B类点前后都有free点,如果没有,那么也无解。

    现在必然存在一条以1为起点,且依次遍历完主干上每个点及其子树的2H-哈密顿路径。

    对于1,如果它是free的,那么方案显然,否则从1出去的点必定是它子树里离它距离只有1的点。

    然后一个一个构造,如果上一个点是第二层的点,那么这一部分起点必须为主干上的点,否则起点选第二层的点显然更优。

    对于一个毛毛虫,可以直接构造出2H-哈密顿环,从中断开某条路径得到合法的方案。

    如下图:

    但是如果一个点是B类点,这个时候是不能如此构造的,只能是起点和终点都是第二层的点,而且起点优先考虑叶子节点,这个时候就又可以按之前的方法构造。

    最后再检验一下终点是否为n即可,时间复杂度$O(n)$。

    #include<cstdio>
    #include<cstdlib>
    #define N 500010
    int n,i,j,x,y,S,T,d[N],g[N],v[N<<1],nxt[N<<1],ed,pre[N],sub[N];
    int f[N],G[N],V[N],NXT[N];
    int m,a[N],ans,fin[N],cnt,q[N],b[N<<1],tot;bool vip[N],fr[N];
    inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
    void NO(){puts("BRAK");std::exit(0);}
    inline void swap(int&a,int&b){int c=a;a=b;b=c;}
    inline void reserve(int*a,int n){for(int i=1,j=n;i<j;i++,j--)swap(a[i],a[j]);}
    inline void add(int x,int y){d[x]++;v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
    inline void ADD(int x,int y){f[y]=x;V[++ed]=y;NXT[ed]=G[x];G[x]=ed;}
    void dfs(int x,int y){
      pre[x]=y;
      for(int i=g[x];i;i=nxt[i])if(v[i]!=y)dfs(v[i],x);
    }
    bool spine(int x,int y){
      int t=0;
      for(int i=g[x];i;i=nxt[i])if(v[i]!=y&&d[v[i]]>1){
        if(!spine(v[i],x))return 0;
        if(t++)return 0;
      }
      return 1;
    }
    inline int any_secondary_node(int x){
      for(int i=g[x];i;i=nxt[i])if(!vip[v[i]])return v[i];
    }
    inline int a_secondary_node_preferably_leaf(int x){
      for(int i=g[x];i;i=nxt[i])if(!vip[v[i]]&&d[v[i]]==1)return v[i];
      return any_secondary_node(x);
    }
    inline int another_secondary_node(int x,int y){
      for(int i=g[x];i;i=nxt[i])if(!vip[v[i]]&&v[i]!=y)return v[i];
    }
    void findspine(int x,int y){
      q[++cnt]=x;
      for(int i=g[x];i;i=nxt[i])if(v[i]!=y)if(d[v[i]]==1)ADD(x,v[i]);else findspine(v[i],x);
    }
    inline int left(int x){return x==1?tot:x-1;}
    inline int right(int x){return x==tot?1:x+1;}
    inline void extend(int x,int a=0,int b=0){
      for(int i=G[x];i;i=NXT[i])if(V[i]!=a&&V[i]!=b)fin[++ans]=V[i];
    }
    inline void path_caterpillar(int x,int S,int T){
      fin[++ans]=S;
      if(S==T)return;
      int i,j,A,B;
      q[cnt=1]=x;
      for(i=g[x];i;i=nxt[i])if(!vip[v[i]]){
        if(d[v[i]]==1)ADD(x,v[i]);
        else{
          if(cnt>1)reserve(q,cnt);
          findspine(v[i],x);
        }
      }
      for(i=1;i<=cnt;i++){
        b[i]=i&1?q[i]:-q[i];
        b[cnt+cnt-i+1]=-b[i];
      }
      for(tot=0,i=1;i<=cnt+cnt;i++){
        if(b[i]<0)if(!G[-b[i]])continue;
        b[++tot]=b[i];
      }
      if(d[S]>1)A=S;else A=-f[S];
      if(d[T]>1)B=T;else B=-f[T];
      for(i=1;i<=tot;i++)if(b[i]==A)break;
      if(A<0)extend(-A,S,T);
      if(b[left(i)]==B)
        for(j=right(i);b[j]!=B;j=right(j))if(b[j]>0)fin[++ans]=b[j];else extend(-b[j]);
      else
        for(j=left(i);b[j]!=B;j=left(j))if(b[j]>0)fin[++ans]=b[j];else extend(-b[j]);
      if(B<0&&A!=B)extend(-B,S,T);
      fin[++ans]=T;
    }
    int main(){
      read(n);
      for(i=1;i<n;i++)read(x),read(y),add(x,y),add(y,x);
      dfs(n,ed=0);
      for(i=1;i!=n;i=pre[i])a[++m]=i;a[++m]=i;
      for(i=1;i<=m;i++)vip[a[i]]=1;
      for(i=1;i<=m;i++){
        x=a[i];fr[x]=1;
        for(j=g[x];j;j=nxt[j]){
          y=v[j];
          if(vip[y])continue;
          fr[x]=0;
          if(d[y]==1)continue;
          sub[x]++;
          if(sub[x]>2)NO();
          if(!spine(y,x))NO();
        }
      }
      for(i=1,j=0;i<=m;i++){
        x=a[i];
        if(fr[x])j=1;
        else if(sub[x]==2){
          if(j!=1)NO();
          j=2;
        }
      }
      if(j==2)NO();
      S=a[1];
      if(fr[a[1]])T=a[1];else T=any_secondary_node(a[1]);
      path_caterpillar(a[1],S,T);
      for(i=2;i<=m;i++){
        x=a[i];
        if(fr[x])S=T=x;
        else if(!vip[T]){
          S=x;
          T=a_secondary_node_preferably_leaf(x);
        }else{
          S=a_secondary_node_preferably_leaf(x);
          T=sub[x]<2?x:another_secondary_node(x,S);
        }
        path_caterpillar(x,S,T);
      }
      if(fin[n]!=n)NO();
      for(i=1;i<=n;i++)printf("%d
    ",fin[i]);
      return 0;
    }
    

      

  • 相关阅读:
    Laravel入坑指南(5)——请求与响应
    Laravel入坑指南(4)——数据库(Mysql)
    CentOS7 开机网卡加载失败
    个人CKeditor的config.js配置
    取消ie浏览器edge浏览器输入框右边的叉和眼睛
    angularjs中ckeditor的destroy问题
    angular js ckeditor directive示例代码
    建立没有文件名的文件
    设置ckeditor文本框的宽度为百分比自适应
    js中遍历删除数组中的项(项目中遇到的问题解决)
  • 原文地址:https://www.cnblogs.com/clrs97/p/5269415.html
Copyright © 2020-2023  润新知