设g[i][j]为i串至少加上几个字符后才能包含j,可以通过Hash求出。
然后就是求经过m-1条边的最短路,用倍增加速Floyed即可,时间复杂度$O(n^3log m)$。
#include<cstdio> #include<cstring> #define rep(i,n) for(int i=0;i<n;i++) typedef long long ll; typedef unsigned int U; const int N=200,M=100010,P=31; const ll inf=1LL<<60; int n,m,i,j,st[N],en[N],len[N],t=1,flag;U pow[M],f[M];char s[M],a[M];ll ans=inf; inline U hash(int l,int r){return f[r]-f[l-1]*pow[r-l+1];} inline int cal(int x,int y){ for(int i=(len[x]<len[y]?len[x]:len[y])-1;i;i--)if(hash(en[x]-i+1,en[x])==hash(st[y],st[y]+i-1))return i; return 0; } inline void up(ll&a,ll b){if(a>b)a=b;} struct mat{ ll a[N][N]; mat(){} inline mat operator*(mat b){ mat c; rep(i,n)rep(j,n)c.a[i][j]=inf; rep(k,n)rep(i,n)rep(j,n)up(c.a[i][j],a[i][k]+b.a[k][j]); return c; } }G,B; int main(){ scanf("%d%d",&n,&m); rep(i,n){ scanf("%s",s); st[i]=t,len[i]=std::strlen(s); rep(j,len[i])a[t+j]=s[j]; en[i]=t+len[i]-1,t+=len[i]; } for(pow[0]=i=1;i<t;i++)pow[i]=pow[i-1]*P; for(i=1;i<t;i++)f[i]=f[i-1]*P+a[i]; rep(i,n)rep(j,n)G.a[i][j]=len[j]-cal(i,j),B.a[i][j]=0; for(m--;m;m>>=1,G=G*G)if(m&1){if(!flag)B=G,flag=1;else B=B*G;} rep(i,n)rep(j,n)up(ans,B.a[i][j]+len[i]); return printf("%lld",ans),0; }