https://devblogs.nvidia.com/jetson-nano-ai-computing/
Table 2 provides full results, including the performance of other platforms like the Raspberry Pi 3, Intel Neural Compute Stick 2, and Google Edge TPU Coral Dev Board:
Model |
Application |
Framework |
NVIDIA Jetson Nano |
Raspberry Pi 3 |
Raspberry Pi 3 + Intel Neural Compute Stick 2 |
Google Edge TPU Dev Board |
ResNet-50 |
Classification |
TensorFlow |
36 FPS |
1.4 FPS |
16 FPS |
DNR |
MobileNet-v2 |
Classification |
TensorFlow |
64 FPS |
2.5 FPS |
30 FPS |
130 FPS |
SSD ResNet-18 (960×544) |
Object Detection |
TensorFlow |
5 FPS |
DNR |
DNR |
DNR |
SSD ResNet-18 (480×272) |
Object Detection |
TensorFlow |
16 FPS |
DNR |
DNR |
DNR |
SSD ResNet-18 (300×300) |
Object Detection |
TensorFlow |
18 FPS |
DNR |
DNR |
DNR |
SSD Mobilenet-V2 (960×544) |
Object |
TensorFlow |
8 FPS |
DNR |
1.8 FPS |
DNR |
SSD Mobilenet-V2 (480×272) |
Object Detection |
TensorFlow |
27 FPS |
DNR |
7 FPS |
DNR |
SSD Mobilenet-V2 (300×300) |
Object Detection |
TensorFlow |
39 FPS |
1 FPS |
11 FPS |
48 FPS |
Inception V4 (299×299) |
Classification |
PyTorch |
11 FPS |
DNR |
DNR |
9 FPS |
Tiny YOLO V3 (416×416) |
Object Detection |
Darknet |
25 FPS |
0.5 FPS |
DNR |
DNR |
OpenPose (256×256) |
Pose Estimation |
Caffe |
14 FPS |
DNR |
5 FPS |
DNR |
VGG-19 (224×224) |
Classification |
MXNet |
10 FPS |
0.5 FPS |
5 FPS |
DNR |
Super Resolution (481×321) |
Image Processing |
PyTorch |
15 FPS |
DNR |
0.6 FPS |
DNR |
Unet (1x512x512) |
Segmentation |
Caffe |
18 FPS |
DNR |
5 FPS |
DNR |