• [MCM] MTSP问题的GA求解 多目标优化 (单起点 与 多起点)


    % MTSP Fix_GA固定多个旅行商问题(M-TSP)遗传算法(GA)
    %  通过设置找到MTSP变体的(近似)最优解
    %通过GA搜索最短路线(每个推销员从起始位置到个别城市并返回原始起点所需的最短距离)
    
    % 说明:
    %  1.每个推销员从第一个点开始,到第一个点结束,但前往一组中唯一的城市
    %  2. 除了第一个,每个城市只有一个推销员访问
    %
    %  注意:固定的起始/结束位置被认为是第一个XY点。
    %
    % Input:
    %     - XY(浮点)是城市位置的Nx2矩阵,其中N是城市的数量
    %     -DMAT(浮点)是城市到城市距离或成本的NxN矩阵
    %     - NSALESMEN(整数)是访问城市的推销员数量
    %     - MINTOUR(整数)是任何销售人员的最小旅行长度,不包括起点/终点
    %     - POPSIZE(整数)是总体的大小(应该可以被8整除)
    %     - NUMITER(整数)是算法运行所需迭代次数
    %     - 如果为真,则SHOWPROG(标量逻辑)显示GA进度
    %     - 如果为真,则SHOWRESULT(标量逻辑)显示GA结果
    %     - 如果为真,  SHOWWAITBAR(标量逻辑)显示等待栏
    %
    % 输入注释:
    %     1. 不是传入包含这些字段的结构,而是可以以任何顺序将任何/所有这些输入作为参数/值对传递。
    %     2. 字段/参数名称不区分大小写,但必须完全匹配。
    %
    % Output:
    %     RESULTSTRUCT(结构)包含以下字段:(除了算法配置的记录)
    %     - OPTROUTE(整数数组)是算法找到的最佳路径
    %     OPTBREAK(整数数组)是路由断点的列表(这些指定了索引用于获取各个推销员路线的路线)
    %     - MINDIST(标量浮点数)是销售人员行进的总距离
    %
    % Route / Breakpoint详细信息:
    %     如果有10个城市和3个推销员,一个可能的路线/突破
    %     组合可能是:RTE=[ 5 6 9 9 4 2 8 10 3 7 ],BRKS=[3 7 ]综合起来,这些表示解[1 5 6 6 9][ 1 4 2 8 10 1 ][1 3 7 1];
    %     指定3名推销员的路线如下:
    %     推销员1从城市1到5旅行到6到9回到1
    %     推销员2从城市1到4旅行到2到8到10回到1
    %     推销员3从城市1到3到7,回到1
    %
    % Example:
    %     % 让函数创建实例问题求解
    %     mtspf_ga;
    % Example:
    %     % 从求解器请求输出结构
    %     resultStruct = mtspf_ga;
    % Example:
    %     % 将用户定义的XY点的随机集合传递给求解器
    %     userConfig = struct('xy',10*rand(35,2));
    %     resultStruct = mtspf_ga(userConfig);
    %
    % Example:
    %     % 向解算器传递一组更有趣的XY点
    %     n = 50;
    %     phi = (sqrt(5)-1)/2;
    %     theta = 2*pi*phi*(0:n-1);
    %     rho = (1:n).^phi;
    %     [x,y] = pol2cart(theta(:),rho(:));
    %     xy = 10*([x y]-min([x;y]))/(max([x;y])-min([x;y]));
    %     userConfig = struct('xy',xy);
    %     resultStruct = mtspf_ga(userConfig);
    %
    % Example: 三维寻路
    %     % 将一组随机的3D(XYZ)点传递给求解器
    %     xyz = 10*rand(35,3);
    %     userConfig = struct('xy',xyz);
    %     resultStruct = mtspf_ga(userConfig);
    %
    % Example:
    %     % 改变遗传算法种群大小和迭代次数的缺省值
    %     userConfig = struct('popSize',200,'numIter',1e4);
    %     resultStruct = mtspf_ga(userConfig);
    %
    % See also: mtsp_ga, mtspo_ga, mtspof_ga, mtspofs_ga, mtspv_ga, distmat
    %
    % Author: Joseph Kirk
    % Email: jdkirk630@gmail.com
    % Release: 2.0
    % Release Date: 05/01/2014
    function varargout = mtspf_ga(varargin)
    
        % Initialize default configuration
        defaultConfig.xy          = 10*rand(40,2);
        defaultConfig.dmat        = [];  % N*N距离矩阵
        defaultConfig.nSalesmen   = 3;
        defaultConfig.minTour     = 10;
        defaultConfig.popSize     = 500;
        defaultConfig.numIter     = 5e3;
        defaultConfig.showProg    = true;
        defaultConfig.showResult  = true;
        defaultConfig.showWaitbar = false;
    
        % Interpret user configuration inputs
        if ~nargin
            userConfig = struct();
        elseif isstruct(varargin{1})
            userConfig = varargin{1};
        else
            try
                userConfig = struct(varargin{:});
            catch
                error('Expected inputs are either a structure or parameter/value pairs');
            end
        end
    
        % Override default configuration with user inputs
        configStruct = get_config(defaultConfig,userConfig);
    
        % Extract configuration
        xy          = configStruct.xy;
        dmat        = configStruct.dmat;
        nSalesmen   = configStruct.nSalesmen;
        minTour     = configStruct.minTour;
        popSize     = configStruct.popSize;
        numIter     = configStruct.numIter;
        showProg    = configStruct.showProg;
        showResult  = configStruct.showResult;
        showWaitbar = configStruct.showWaitbar;
        if isempty(dmat)
            nPoints = size(xy,1);
            a = meshgrid(1:nPoints);
            dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),nPoints,nPoints);
        end
    
        % Verify Inputs 验证输入
        [N,dims] = size(xy);
        [nr,nc] = size(dmat);
        if N ~= nr || N ~= nc
            error('Invalid XY or DMAT inputs!')
        end
        n = N - 1; % Separate Start/End City
    
        % Sanity Checks
        nSalesmen   = max(1,min(n,round(real(nSalesmen(1)))));
        minTour     = max(1,min(floor(n/nSalesmen),round(real(minTour(1)))));
        popSize     = max(8,8*ceil(popSize(1)/8));
        numIter     = max(1,round(real(numIter(1))));
        showProg    = logical(showProg(1));
        showResult  = logical(showResult(1));
        showWaitbar = logical(showWaitbar(1));
    
        % Initializations for Route Break Point Selection 路径断点选择的初始化
        nBreaks = nSalesmen-1;
        dof = n - minTour*nSalesmen;          % degrees of freedom
        addto = ones(1,dof+1);
        for k = 2:nBreaks
            addto = cumsum(addto);
        end
        cumProb = cumsum(addto)/sum(addto);
    
        % Initialize the Populations
        popRoute = zeros(popSize,n);         % population of routes
        popBreak = zeros(popSize,nBreaks);   % population of breaks
        popRoute(1,:) = (1:n) + 1;
        popBreak(1,:) = rand_breaks();
        for k = 2:popSize
            popRoute(k,:) = randperm(n) + 1;
            popBreak(k,:) = rand_breaks();
        end
    
        % Select the Colors for the Plotted Routes    所画路径的颜色
        pclr = ~get(0,'DefaultAxesColor');
        clr = [1 0 0; 0 0 1; 0.67 0 1; 0 1 0; 1 0.5 0];
        if nSalesmen > 5
            clr = hsv(nSalesmen);
        end
    
        % Run the GA
        globalMin = Inf;
        totalDist = zeros(1,popSize);
        distHistory = zeros(1,numIter);
        tmpPopRoute = zeros(8,n);
        tmpPopBreak = zeros(8,nBreaks);
        newPopRoute = zeros(popSize,n);
        newPopBreak = zeros(popSize,nBreaks);
        if showProg
            figure('Name','MTSPF_GA | Current Best Solution','Numbertitle','off');
            hAx = gca;
        end
        if showWaitbar
            hWait = waitbar(0,'Searching for near-optimal solution ...');
        end
        for iter = 1:numIter
        % Evaluate Members of the Population    人口评估
            for p = 1:popSize
                d = 0;
                pRoute = popRoute(p,:);
                pBreak = popBreak(p,:);
                rng = [[1 pBreak+1];[pBreak n]]';
                for s = 1:nSalesmen
                    d = d + dmat(1,pRoute(rng(s,1))); % Add Start Distance
                    for k = rng(s,1):rng(s,2)-1
                        d = d + dmat(pRoute(k),pRoute(k+1));
                    end
                    d = d + dmat(pRoute(rng(s,2)),1); % Add End Distance
                end
                totalDist(p) = d;
            end
    
         % Find the Best Route in the Population
            [minDist,index] = min(totalDist);
            distHistory(iter) = minDist;
            if minDist < globalMin
                globalMin = minDist;
                optRoute = popRoute(index,:);
                optBreak = popBreak(index,:);
                rng = [[1 optBreak+1];[optBreak n]]';
                if showProg
         % Plot the Best Route   实时展示最优路径
                    for s = 1:nSalesmen
                        rte = [1 optRoute(rng(s,1):rng(s,2)) 1];
                        if dims > 2, plot3(hAx,xy(rte,1),xy(rte,2),xy(rte,3),'.-','Color',clr(s,:));
                        else plot(hAx,xy(rte,1),xy(rte,2),'.-','Color',clr(s,:)); end
                        hold(hAx,'on');
                    end
                    if dims > 2, plot3(hAx,xy(1,1),xy(1,2),xy(1,3),'o','Color',pclr);
                    else plot(hAx,xy(1,1),xy(1,2),'o','Color',pclr); end
                    title(hAx,sprintf('Total Distance = %1.4f, Iteration = %d',minDist,iter));
                    hold(hAx,'off');
                    drawnow;
                end
            end
    
          % Genetic Algorithm Operators
            randomOrder = randperm(popSize);
            for p = 8:8:popSize
                rtes = popRoute(randomOrder(p-7:p),:);
                brks = popBreak(randomOrder(p-7:p),:);
                dists = totalDist(randomOrder(p-7:p));
                [ignore,idx] = min(dists); %#ok
                bestOf8Route = rtes(idx,:);
                bestOf8Break = brks(idx,:);
                routeInsertionPoints = sort(ceil(n*rand(1,2)));
                I = routeInsertionPoints(1);
                J = routeInsertionPoints(2);
                for k = 1:8 % Generate New Solutions
                    tmpPopRoute(k,:) = bestOf8Route;
                    tmpPopBreak(k,:) = bestOf8Break;
                    switch k
                        case 2 % Flip
                            tmpPopRoute(k,I:J) = tmpPopRoute(k,J:-1:I);
                        case 3 % Swap
                            tmpPopRoute(k,[I J]) = tmpPopRoute(k,[J I]);
                        case 4 % Slide
                            tmpPopRoute(k,I:J) = tmpPopRoute(k,[I+1:J I]);
                        case 5 % Modify Breaks
                            tmpPopBreak(k,:) = rand_breaks();
                        case 6 % Flip, Modify Breaks
                            tmpPopRoute(k,I:J) = tmpPopRoute(k,J:-1:I);
                            tmpPopBreak(k,:) = rand_breaks();
                        case 7 % Swap, Modify Breaks
                            tmpPopRoute(k,[I J]) = tmpPopRoute(k,[J I]);
                            tmpPopBreak(k,:) = rand_breaks();
                        case 8 % Slide, Modify Breaks
                            tmpPopRoute(k,I:J) = tmpPopRoute(k,[I+1:J I]);
                            tmpPopBreak(k,:) = rand_breaks();
                        otherwise % Do Nothing
                    end
                end
                newPopRoute(p-7:p,:) = tmpPopRoute;
                newPopBreak(p-7:p,:) = tmpPopBreak;
            end
            popRoute = newPopRoute;
            popBreak = newPopBreak;
    
            % Update the waitbar
            if showWaitbar && ~mod(iter,ceil(numIter/325))
                waitbar(iter/numIter,hWait);
            end
    
        end
        if showWaitbar
            close(hWait);
        end
    
        if showResult
            % Plots     画图
            figure('Name','MTSPF_GA | Results','Numbertitle','off');
            subplot(2,2,1);
            if dims > 2, plot3(xy(:,1),xy(:,2),xy(:,3),'.','Color',pclr);
            else plot(xy(:,1),xy(:,2),'.','Color',pclr); end
            title('City Locations');
            subplot(2,2,2);
            imagesc(dmat([1 optRoute],[1 optRoute]));
            title('Distance Matrix');
            subplot(2,2,3);
            rng = [[1 optBreak+1];[optBreak n]]';
            for s = 1:nSalesmen
                rte = [1 optRoute(rng(s,1):rng(s,2)) 1];
                if dims > 2, plot3(xy(rte,1),xy(rte,2),xy(rte,3),'.-','Color',clr(s,:));
                else plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:)); end
                title(sprintf('Total Distance = %1.4f',minDist));
                hold on;
            end
            if dims > 2, plot3(xy(1,1),xy(1,2),xy(1,3),'o','Color',pclr);
            else plot(xy(1,1),xy(1,2),'o','Color',pclr); end
            subplot(2,2,4);
            plot(distHistory,'b','LineWidth',2);
            title('Best Solution History');
            set(gca,'XLim',[0 numIter+1],'YLim',[0 1.1*max([1 distHistory])]);
        end
    
        % Return Output
        if nargout
            resultStruct = struct( ...
                'xy',          xy, ...
                'dmat',        dmat, ...
                'nSalesmen',   nSalesmen, ...
                'minTour',     minTour, ...
                'popSize',     popSize, ...
                'numIter',     numIter, ...
                'showProg',    showProg, ...
                'showResult',  showResult, ...
                'showWaitbar', showWaitbar, ...
                'optRoute',    optRoute, ...
                'optBreak',    optBreak, ...
                'minDist',     minDist);
    
            varargout = {resultStruct};
        end
    
        % Generate Random Set of Break Points
        function breaks = rand_breaks()
            if minTour == 1 % No Constraints on Breaks
                tmpBreaks = randperm(n-1);
                breaks = sort(tmpBreaks(1:nBreaks));
            else % Force Breaks to be at Least the Minimum Tour Length
                nAdjust = find(rand < cumProb,1)-1;
                spaces = ceil(nBreaks*rand(1,nAdjust));
                adjust = zeros(1,nBreaks);
                for kk = 1:nBreaks
                    adjust(kk) = sum(spaces == kk);
                end
                breaks = minTour*(1:nBreaks) + cumsum(adjust);
            end
        end
    
    end
    
    % Subfunction to override the default configuration with user inputs
    % 将输入初始化,什么都不输入,就用这个应该是
    function config = get_config(defaultConfig,userConfig)
    
        % Initialize the configuration structure as the default
        config = defaultConfig;
    
        % Extract the field names of the default configuration structure
        defaultFields = fieldnames(defaultConfig);
    
        % Extract the field names of the user configuration structure
        userFields = fieldnames(userConfig);
        nUserFields = length(userFields);
    
        % Override any default configuration fields with user values
        for i = 1:nUserFields
            userField = userFields{i};
            isField = strcmpi(defaultFields,userField);
            if nnz(isField) == 1
                thisField = defaultFields{isField};
                config.(thisField) = userConfig.(userField);
            end
        end
    
    end
    mtspf_ga.m
    n = 100;
    phi = (sqrt(5)-1)/2;
     theta = 2*pi*phi*(0:n-1);
    rho = (1:n).^phi;
     [x,y] = pol2cart(theta(:),rho(:));
    xy = 10*([x y]-min([x;y]))/(max([x;y])-min([x;y]));
    userConfig = struct('xy',xy);
     resultStruct = mtspf_ga(userConfig);
    具体的调用在函数文件里面有实例

     以上是  定起点定终点的多旅行商问题,其中的城市坐标数据是随机的。

    function [min_dist,best_tour,generation] = mdmtspv_ga(xy,max_salesmen,depots,CostType,min_tour,pop_size,num_iter,show_prog,show_res,dmat)
    % MDMTSPV_GA Multiple Depots Multiple Traveling Salesmen Problem (M-TSP)
    % with Variable number of salesmen using Genetic Algorithm (GA)
    %   Finds a (near) optimal solution to a variation of the M-TSP (that has a
    %   variable number of salesmen) by setting up a GA to search for the
    %   shortest route (least distance needed for the salesmen to travel to
    %   each city exactly once and return to their starting locations). The
    %   salesmen originate from a set of fixed locations, called depots.
    %   This algorithm is based on Joseph Kirk's MTSPV_GA, but adds the
    %   following functionality:
    %     1. Depots at which each salesman originates and ends its tour.
    %     2. Two possible cost functions, that allow to find minimum sum of all
    %        tour lengths (as in the original version) and to find the minimum
    %        longest tour. The latter problem is sometimes called MinMaxMDMTSP.
    %
    % Summary:
    %     1. Each salesman travels to a unique set of cities and completes the
    %        route by returning to the depot he started from
    %     2. Each city is visited by exactly one salesman
    %
    % Input:
    %     XY (float) is an Nx2 matrix of city locations, where N is the number of cities
    %     max_salesmen (scalar integer) is the maximum number of salesmen
    %     depots (float)  ia an Mx2 matrix of the depots used by salesmen, M=max_salesmen
    %     CostType (integer) defines which cost we use. If 1 - sum of all route lengths, if 2 - maximum route length%     MIN_TOUR (scalar integer) is the minimum tour length for any of the salesmen
    %     POP_SIZE (scalar integer) is the size of the population (should be divisible by 16)
    %     NUM_ITER (scalar integer) is the number of desired iterations for the
    %       algorithm to run after a new best solution is found. Don't worry the
    %       algorithm will always stop.
    %     SHOW_PROG (scalar logical) shows the GA progress if true
    %     SHOW_RES (scalar logical) shows the GA results if true
    %     DMAT (float) is an NxN matrix of point to point distances or costs
    
    %
    % Output:
    %     MIN_DIST (scalar float) is the best cost found by the algorithm
    %     BEST_TOUR (matrix integer) is an MxL matrix, each row is an agent tour
    %     Generation (scalar integer) is the number of generations required by
    %       the algorithm to find the solution
    
    %
    % Route/Breakpoint Details:
    %     The algorithm uses a data structure in which RTE lists the cities in
    %     a route and BRKS lists break points that divide RTE  between agents.
    %     If there are 10 cities and 3 salesmen, a possible route/break
    %     combination might be: rte = [5 6 9 1 4 2 8 10 3 7], brks = [3 7]
    %     Taken together, these represent the solution [5 6 9][1 4 2 8][10 3 7],
    %     which designates the routes for the 3 salesmen as follows:
    %         . Salesman 1 travels from city 5 to 6 to 9 and back to 5
    %         . Salesman 2 travels from city 1 to 4 to 2 to 8 and back to 1
    %         . Salesman 3 travels from city 10 to 3 to 7 and back to 10
    %     Note that the salesman's depot will be taken into accout, so the
    %     complete routes returned by the algorithm will be: 
    %         For agent 1: [1 5 6 9 1] - from depot 1 along the route and back
    %         For agent 2: [2 1 4 2 8 2] - from depot 2 along the route and back
    %         For agent 3: [3 10 3 7 3] - from depot 3 along the rout and back
    %
    % 2D Example:
    %     n = 35;
    %     xy = 10*rand(n,2);
    %     max_salesmen = 5;
    %     depots = 10*rand(max_salesmen,2);
    %     CostType=1; %- total length, use 2 to minimize the longest tour
    %     min_tour = 3;
    %     pop_size = 80;
    %     num_iter = 1e3;
    %     a = meshgrid(1:n);
    %     dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),n,n);
    %     [min_dist,best_tour,generation] = mdmtspv_ga(xy,max_salesmen,depots,CostType,min_tour,pop_size,num_iter,1,1,dmat)
    %
    % 3D Example:
    %     n = 35;
    %     xy = 10*rand(n,3);
    %     max_salesmen = 5;
    %     depots = 10*rand(max_salesmen,3);
    %     CostType=1; %- total length, use 2 to minimize the longest tour
    %     min_tour = 3;
    %     pop_size = 80;
    %     num_iter = 1e3;
    %     a = meshgrid(1:n);
    %     dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),n,n);
    %     [min_dist,best_tour,generation] = mdmtspv_ga(xy,max_salesmen,depots,CostType,min_tour,pop_size,num_iter,1,1,dmat)
    %
    % See also: mtsp_ga, mtspf_ga, mtspo_ga, mtspof_ga, mtspofs_ga, distmat
    %
    % Author: Elad Kivelevitch
    % Based on: Joseph Kirk's MTSPV_GA (see MATLAB Central for download)
    % Release: 1.0
    % Release Date: June 15, 2011
    
    % Process Inputs and Initialize Defaults
    nargs = 10;
    for k = nargin:nargs-1
        switch k
            case 0
                xy = 10*rand(40,2);
            case 1
                max_salesmen=10;
            case 2
                depots = 10*rand(max_salesmen,2);            
            case 3
                CostType = 2;
            case 4
                min_tour = 1;
            case 5
                pop_size = 80;
            case 6
                num_iter = 1e3;
            case 7
                show_prog = 1;
            case 8
                show_res = 1;
            case 9
                N = size(xy,1);
                a = meshgrid(1:N);
                dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),N,N);
            otherwise
        end
    end
    
    Epsilon=1e-10;
    
    % Distances to Depots
    %Assumes that each salesman is located at a different depot and there are
    %enough depots
    [NumOfCities,Dimensions]=size(xy);
    for i=1:max_salesmen
        for j=1:NumOfCities
            D0(i,j)=norm(depots(i,:)-xy(j,:));
        end
    end
    
    % Verify Inputs
    [N,dims] = size(xy);
    [nr,nc] = size(dmat);
    if N ~= nr || N ~= nc
        error('Invalid XY or DMAT inputs!')
    end
    n = N;
    
    % Sanity Checks
    min_tour = max(1,min(n,round(real(min_tour(1)))));
    pop_size = max(8,8*ceil(pop_size(1)/8));
    num_iter = max(1,round(real(num_iter(1))));
    show_prog = logical(show_prog(1));
    show_res = logical(show_res(1));
    
    % Initialize the Populations
    pop_rte = zeros(pop_size,n);    % population of routes
    pop_brk = cell(pop_size,1);     % population of breaks
    for k = 1:pop_size
        pop_rte(k,:) = randperm(n);
        pop_brk{k} = randbreak(max_salesmen,n,min_tour);
    end
    
    % Select the Colors for the Plotted Routes
    %clr = hsv(ceil(n/min_tour));
    clr = hsv(max_salesmen);
    
    % Run the GA
    global_min = Inf;
    total_dist = zeros(1,pop_size);
    dist_history = zeros(1,num_iter);
    tmp_pop_rte = zeros(8,n);
    tmp_pop_brk = cell(8,1);
    new_pop_rte = zeros(pop_size,n);
    new_pop_brk = cell(pop_size,1);
    if show_prog
        pfig = figure('Name','MTSPV_GA | Current Best Solution','Numbertitle','off');
    end
    iter=0;
    iter2go=0;
    while iter2go < num_iter
        iter2go=iter2go+1;
        iter=iter+1;
        % Evaluate Each Population Member (Calculate Total Distance)
        for p = 1:pop_size
            d = [];
            p_rte = pop_rte(p,:);
            p_brk = pop_brk{p};
            salesmen = length(p_brk)+1;
            rng=CalcRange(p_brk,n);
            for sa = 1:salesmen
                if rng(sa,1)<=rng(sa,2)
                    Tour=[sa p_rte(rng(sa,1):rng(sa,2)) sa];
                    indices=length(Tour)-1;
                    d(sa)=CalcTourLength(Tour,dmat,D0,indices);
                else
                    Tour=[sa sa];
                    d(sa)=0;
                end
            end
            if CostType==1
                total_dist(p) = sum(d);
            elseif CostType==2
                total_dist(p) = max(d)+Epsilon*sum(d);
            end
        end
    
        % Find the Best Route in the Population
        [min_dist,index] = min(total_dist);
        dist_history(iter) = min_dist;
        if min_dist < global_min
            iter2go=0;
            generation=iter;
            global_min = min_dist;
            opt_rte = pop_rte(index,:);
            opt_brk = pop_brk{index};
            salesmen = length(opt_brk)+1;
            rng=CalcRange(opt_brk,n);
            if show_prog
                % Plot the Best Route
                figure(pfig);
                clf
                for s = 1:salesmen
                    if dims==2
                        plot(depots(s,1),depots(s,2),'s','Color',clr(s,:));
                    else
                        plot3(depots(s,1),depots(s,2),depots(s,3),'s','Color',clr(s,:));
                    end
                    if rng(s,1)<=rng(s,2)
                        rte = opt_rte([rng(s,1):rng(s,2)]);
                        hold on;
                        if ~isempty(rte) && dims == 2
                            plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:));                                    
                            plot([depots(s,1),xy(rte(1),1)],[depots(s,2),xy(rte(1),2)],'Color',clr(s,:));
                            plot([depots(s,1),xy(rte(end),1)],[depots(s,2),xy(rte(end),2)],'Color',clr(s,:));
                        elseif ~isempty(rte) && dims == 3
                            plot3(xy(rte,1),xy(rte,2),xy(rte,3),'.-','Color',clr(s,:));                                    
                            plot3([depots(s,1),xy(rte(1),1)],[depots(s,2),xy(rte(1),2)],[depots(s,3),xy(rte(1),3)],'Color',clr(s,:));
                            plot3([depots(s,1),xy(rte(end),1)],[depots(s,2),xy(rte(end),2)],[depots(s,3),xy(rte(end),3)],'Color',clr(s,:));
                        end                    
                    end
                    title(sprintf(['Total Distance = %1.4f, Salesmen = %d, ' ...
                        'Iteration = %d'],min_dist,salesmen,iter));
                    hold on
                end
                pause(0.02)
                hold off
            end
        end
    
        % Genetic Algorithm Operators
        rand_grouping = randperm(pop_size);
        ops=16;
        for p = ops:ops:pop_size
            rtes = pop_rte(rand_grouping(p-ops+1:p),:);
            brks = pop_brk(rand_grouping(p-ops+1:p));
            dists = total_dist(rand_grouping(p-ops+1:p));
            [ignore,idx] = min(dists);
            best_of_8_rte = rtes(idx,:);
            best_of_8_brk = brks{idx};
            rte_ins_pts = sort(ceil(n*rand(1,2)));
            I = rte_ins_pts(1);
            J = rte_ins_pts(2);
            for k = 1:ops % Generate New Solutions
                tmp_pop_rte(k,:) = best_of_8_rte;
                tmp_pop_brk{k} = best_of_8_brk;
                switch k
                    case 2 % Flip
                        tmp_pop_rte(k,I:J) = fliplr(tmp_pop_rte(k,I:J));
                    case 3 % Swap
                        tmp_pop_rte(k,[I J]) = tmp_pop_rte(k,[J I]);
                    case 4 % Slide
                        tmp_pop_rte(k,I:J) = tmp_pop_rte(k,[I+1:J I]);
                    case 5 % Change Breaks
                        tmp_pop_brk{k} = randbreak(max_salesmen,n,min_tour);
                    case 6 % Flip, Change Breaks
                        tmp_pop_rte(k,I:J) = fliplr(tmp_pop_rte(k,I:J));
                        tmp_pop_brk{k} = randbreak(max_salesmen,n,min_tour);
                    case 7 % Swap, Change Breaks
                        tmp_pop_rte(k,[I J]) = tmp_pop_rte(k,[J I]);
                        tmp_pop_brk{k} = randbreak(max_salesmen,n,min_tour);
                    case 8 % Slide, Change Breaks
                        tmp_pop_rte(k,I:J) = tmp_pop_rte(k,[I+1:J I]);
                        tmp_pop_brk{k} = randbreak(max_salesmen,n,min_tour);
                    case 9
                        l=random('unid',min(n-J-1,floor(sqrt(n))));
                        if isnan(l)
                            l=0;
                        end
                        temp1=tmp_pop_rte(k,I:I+l);
                        temp2=tmp_pop_rte(k,J:J+l);
                        tmp_pop_rte(k,I:I+l)=temp2;
                        tmp_pop_rte(k,I:I+l)=temp1;
    %                 case 9 %Choose agent
    %                     m=length(tmp_pop_brk{k});
    %                     l=random('unid',m);
    %                     temp=[ones(1,l), n*ones(1,m-l)];
    %                     tmp_pop_brk{k} = temp;
    
                    case 12 % Remove tasks from agent
                            l=random('unid',max_salesmen-1,1,1);
                            temp=tmp_pop_brk{k};
                            temp=[temp(1:l-1) temp(l+1:end) n];
                            tmp_pop_brk{k}=temp;
    
                    case 13 
                            l=random('unid',max_salesmen-1,1,1);
                            temp=tmp_pop_brk{k};
                            temp=[1 temp(1:l-1) temp(l+1:end)];
                            tmp_pop_brk{k}=temp;
                    otherwise %swap close points
                        if I<n
                            tmp_pop_rte(k,[I I+1]) = tmp_pop_rte(k,[I+1 I]);
                        end
                end
            end
            new_pop_rte(p-ops+1:p,:) = tmp_pop_rte;
            new_pop_brk(p-ops+1:p) = tmp_pop_brk;
        end
        pop_rte = new_pop_rte;
        pop_brk = new_pop_brk;
    end
    
    if show_res
        % Plots
        figure('Name','MTSPV_GA | Results','Numbertitle','off');
        subplot(2,2,1);
        if dims == 3        
            plot3(xy(:,1),xy(:,2),xy(:,3),'k.');
            hold on;
            for s=1:max_salesmen
                plot3(depots(s,1),depots(s,2),depots(s,3),'s','Color',clr(s,:)); 
            end
        else
            plot(xy(:,1),xy(:,2),'k.');
            hold on;
            for s=1:max_salesmen
                plot(depots(s,1),depots(s,2),'s','Color',clr(s,:)); 
            end
        end
        title('City / Depots Locations');
        subplot(2,2,2);
        imagesc(dmat(opt_rte,opt_rte));
        title('Distance Matrix');
        salesmen = length(opt_brk)+1;
        subplot(2,2,3);
        rng=CalcRange(opt_brk,n);
        for s = 1:salesmen
            if dims==3
                plot3(depots(s,1),depots(s,2),depots(s,3),'s','Color',clr(s,:));
                hold on;
                if rng(s,2)>=rng(s,1)
                    rte = opt_rte([rng(s,1):rng(s,2)]);
                    plot3(xy(rte,1),xy(rte,2),xy(rte,3),'.-','Color',clr(s,:));                                
                    if ~isempty(rte)
                        plot3(xy(rte,1),xy(rte,2),xy(rte,3),'.-','Color',clr(s,:));
                        plot3([depots(s,1),xy(rte(1),1)],[depots(s,2),xy(rte(1),2)],[depots(s,3),xy(rte(1),3)],'Color',clr(s,:));
                        plot3([depots(s,1),xy(rte(end),1)],[depots(s,2),xy(rte(end),2)],[depots(s,3),xy(rte(end),3)],'Color',clr(s,:));
                    end                
                end
            else
                plot(depots(s,1),depots(s,2),'s','Color',clr(s,:));
                hold on;
                if rng(s,2)>=rng(s,1)
                    rte = opt_rte([rng(s,1):rng(s,2)]);                                        
                    if ~isempty(rte)
                        plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:));  
                        plot([depots(s,1),xy(rte(1),1)],[depots(s,2),xy(rte(1),2)],'Color',clr(s,:));
                        plot([depots(s,1),xy(rte(end),1)],[depots(s,2),xy(rte(end),2)],'Color',clr(s,:));
                    end                
                end
            end
            title(sprintf('Total Distance = %1.4f',min_dist));
            hold on;
        end
        subplot(2,2,4);
        plot(dist_history,'b','LineWidth',2)
        title('Best Solution History');
        set(gca,'XLim',[0 num_iter+1],'YLim',[0 1.1*max([1 dist_history])]);
    end
    
    % Return Outputs
    
    for i=1:max_salesmen
        if rng(i,1)<=rng(i,2)
            best_tour(i,1:(rng(i,2)-rng(i,1)+3))=[i,opt_rte([rng(i,1):rng(i,2)]),i];
        else
            best_tour(i,1:2)=[i i];
        end
        best_tour
        %generation=iter;
    end
    
    %==========================================================================
    %Additional functions called during the run
    function VehicleTourLength=CalcTourLength(Tour,d,d0,indices)
    VehicleTourLength=d0(Tour(1),Tour(2));
    for c=2:indices-1
        VehicleTourLength=VehicleTourLength+d(Tour(c+1),Tour(c));
    end
    VehicleTourLength=VehicleTourLength+d0(Tour(indices+1),Tour(indices));
    
    function rng=CalcRange(p_brk,n)
    flag=1;
    for i=1:length(p_brk)
        if flag==1 && p_brk(i)>1
            rng(i,:)=[1 p_brk(i)];
            flag=0;
        elseif flag==1
            rng(i,:)=[1 0];
        elseif p_brk(i)<=p_brk(i-1)
            rng(i,:)=[p_brk(i-1) p_brk(i)];
        elseif i<length(p_brk)
            rng(i,:)=[p_brk(i-1)+1 p_brk(i)];
        else
            rng(i,:)=[p_brk(i-1)+1 p_brk(i)];
        end        
    end
    if p_brk(end)<n && p_brk(end)~=1
        rng(i+1,:)=[p_brk(end)+1 n];
    elseif p_brk(end)<n && p_brk(end)==1
        rng(i+1,:)=[p_brk(end) n];
    else
        rng(i+1,:)=[p_brk(end) n-1];
    end
    
    function breaks = randbreak(max_salesmen,n,min_tour)
    num_brks = max_salesmen - 1;
    breaks = sort(random('unid',n,1,num_brks));
    % 
    % 通过设置GA来搜索最短路径(所需的最短距离或销售人员前往每个城市只需一次,并找到M-TSP的变体(具有可变数量的推销员)的(近)最优解决方案回到他们的起始位置)。销售人员来自一组固定的位置,称为仓库。 
    % 该算法基于Joseph Kirk的MTSPV_GA,但增加了以下功能: 
    % 1。每个销售人员发起并结束其旅程的仓库。 
    % 2.两种可能的成本函数,允许找到所有游览长度的最小总和(如在原始版本中)并找到最小的最长游览。后一个问题有时被称为MinMaxMDMTSP。
    % 
    % 摘要: 
    % 1。每个推销员前往一组独特的城市,并通过返回他开始的仓库完成路线。 
    % 每个城市都由一位推销员访问。
    % 
    % 输入: 
    % * XY(浮点)是城市位置的Nx2矩阵,其中N是城市数量 
    % * max_salesmen(标量整数)是销售员
    % *仓库(浮动)的最大数量,是销售人员使用的 仓库的Mx2矩阵, M = max_salesmen 
    % * CostType(整数)定义我们使用的成本。如果1 - 所有路由长度的总和,如果2 - 最大路由长度 
    % * MIN_TOUR(标量整数)是任何销售人员的最小游览长度 
    % * POP_SIZE(标量整数)是总体的大小(应该可以被16整除) 
    % * NUM_ITER(标量整数)是在找到新的最佳解决方案后算法运行所需的迭代次数。不要担心算法会一直停止。 
    % * SHOW_PROG(标量逻辑)显示GA进度,如果为true 
    % * SHOW_RES(标量逻辑)显示GA结果,如果为真 
    % * DMAT(float)是点到点距离或成本的NxN矩阵
    % 
    % 输出: 
    % * MIN_DIST(标量浮点)是算法找到的最佳成本,具体取决于所使用的成本函数。 
    % * BEST_TOUR(矩阵整数)是一个MxL矩阵,每一行都是一个代理游览 
    % *生成(标量整数)是算法找到解决方案所需的代数
    mdmtspv_ga.m
        n = 100;
        xy = 10*rand(n,2);
        max_salesmen = 5;
        depots = 10*rand(max_salesmen,2);
        CostType=2; %- total length, use 2 to minimize the longest tour
        min_tour = 5;
        pop_size = 80;
        num_iter = 1e3;
        a = meshgrid(1:n);
        dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),n,n);
        [min_dist,best_tour,generation] = mdmtspv_ga(xy,max_salesmen,depots,CostType,min_tour,pop_size,num_iter,1,1,dmat)
    调用函数

      以上是  多起点的多旅行商问题,其中的城市坐标数据是随机的。 具体参数调试可以更优

  • 相关阅读:
    庆贺自己的软件入围中国软件创新大赛,可惜精英奖没有评上。一个笔记本飞了,哈哈,大奖500万呢!
    VMware vSphere开发(2)配置VMware vSphere Web Services SDK的开发环境
    IPhone 视图切换的的2种方法
    Windows系统加固方案
    我们公司原来C++招聘考试题,题目难度正常,没有稀奇古怪的题,如果答对60分以上,恭喜你基本算一个合格的网络开发工程师了。
    算法分析整数划分
    Java反射机制
    Java类集
    设计包含min函数的栈
    ASP.NET学习之Membership
  • 原文地址:https://www.cnblogs.com/clemente/p/9598034.html
Copyright © 2020-2023  润新知