• [python] A*算法基于栅格地图的全局路径规划


    # 所有节点的g值并没有初始化为无穷大
    # 当两个子节点的f值一样时,程序选择最先搜索到的一个作为父节点加入closed
    # 对相同数值的不同对待,导致不同版本的A*算法找到等长的不同路径
    # 最后closed表中的节点很多,如何找出最优的一条路径
    # 撞墙之后产生较多的节点会加入closed表,此时开始删除closed表中不合理的节点,1.1版本的思路
    # 1.2版本思路,建立每一个节点的方向指针,指向f值最小的上个节点
    # 参考《无人驾驶概论》、《基于A*算法的移动机器人路径规划》王淼驰,《人工智能及应用》鲁斌
    
    
    import numpy
    from pylab import *
    import copy
    
    # 定义一个含有障碍物的20×20的栅格地图
    # 10表示可通行点
    # 0表示障碍物
    # 7表示起点
    # 5表示终点
    map_grid = numpy.full((20, 20), int(10), dtype=numpy.int8)
    map_grid[3, 3:8] = 0
    map_grid[3:10, 7] = 0
    map_grid[10, 3:8] = 0
    map_grid[17, 13:17] = 0
    map_grid[10:17, 13] = 0
    map_grid[10, 13:17] = 0
    map_grid[5, 2] = 7
    map_grid[15, 15] = 5
    
    
    class AStar(object):
        """
        创建一个A*算法类
        """
    
        def __init__(self):
            """
            初始化
            """
            # self.g = 0  # g初始化为0
            self.start = numpy.array([5, 2])  # 起点坐标
            self.goal = numpy.array([15, 15])  # 终点坐标
            self.open = numpy.array([[], [], [], [], [], []])  # 先创建一个空的open表, 记录坐标,方向,g值,f值
            self.closed = numpy.array([[], [], [], [], [], []])  # 先创建一个空的closed表
            self.best_path_array = numpy.array([[], []])  # 回溯路径表
    
        def h_value_tem(self, son_p):
            """
            计算拓展节点和终点的h值
            :param son_p:子搜索节点坐标
            :return:
            """
            h = (son_p[0] - self.goal[0]) ** 2 + (son_p[1] - self.goal[1]) ** 2
            h = numpy.sqrt(h)  # 计算h
            return h
    
        # def g_value_tem(self, son_p, father_p):
        #     """
        #     计算拓展节点和父节点的g值
        #     其实也可以直接用1或者1.414代替
        #     :param son_p:子节点坐标
        #     :param father_p:父节点坐标,也就是self.current_point
        #     :return:返回子节点到父节点的g值,但不是全局g值
        #     """
        #     g1 = father_p[0] - son_p[0]
        #     g2 = father_p[1] - son_p[1]
        #     g = g1 ** 2 + g2 ** 2
        #     g = numpy.sqrt(g)
        #     return g
    
        def g_accumulation(self, son_point, father_point):
            """
            累计的g值
            :return:
            """
            g1 = father_point[0] - son_point[0]
            g2 = father_point[1] - son_point[1]
            g = g1 ** 2 + g2 ** 2
            g = numpy.sqrt(g) + father_point[4]  # 加上累计的g值
            return g
    
        def f_value_tem(self, son_p, father_p):
            """
            求出的是临时g值和h值加上累计g值得到全局f值
            :param father_p: 父节点坐标
            :param son_p: 子节点坐标
            :return:f
            """
            f = self.g_accumulation(son_p, father_p) + self.h_value_tem(son_p)
            return f
    
        def child_point(self, x):
            """
            拓展的子节点坐标
            :param x: 父节点坐标
            :return: 子节点存入open表,返回值是每一次拓展出的子节点数目,用于撞墙判断
            当搜索的节点撞墙后,如果不加处理,会陷入死循环
            """
            # 开始遍历周围8个节点
            for j in range(-1, 2, 1):
                for q in range(-1, 2, 1):
    
                    if j == 0 and q == 0:  # 搜索到父节点去掉
                        continue
                    m = [x[0] + j, x[1] + q]
                    print(m)
                    if m[0] < 0 or m[0] > 19 or m[1] < 0 or m[1] > 19:  # 搜索点出了边界去掉
                        continue
    
                    if map_grid[int(m[0]), int(m[1])] == 0:  # 搜索到障碍物去掉
                        continue
    
    
    
                    record_g = self.g_accumulation(m, x)
                    record_f = self.f_value_tem(m, x)  # 计算每一个节点的f值
    
                    x_direction, y_direction = self.direction(x, m)  # 每产生一个子节点,记录一次方向
    
                    para = [m[0], m[1], x_direction, y_direction, record_g, record_f]  # 将参数汇总一下
                    print(para)
    
                    # 在open表中,则去掉搜索点,但是需要更新方向指针和self.g值
                    # 而且只需要计算并更新self.g即可,此时建立一个比较g值的函数
                    a, index = self.judge_location(m, self.open)
                    if a == 1:
                        # 说明open中已经存在这个点
    
                        if record_f <= self.open[5][index]:
                            self.open[5][index] = record_f
                            self.open[4][index] = record_g
                            self.open[3][index] = y_direction
                            self.open[2][index] = x_direction
    
                        continue
    
                    # 在closed表中,则去掉搜索点
                    b, index2 = self.judge_location(m, self.closed)
                    if b == 1:
    
                        if record_f <= self.closed[5][index2]:
                            self.closed[5][index2] = record_f
                            self.closed[4][index2] = record_g
                            self.closed[3][index2] = y_direction
                            self.closed[2][index2] = x_direction
                            self.closed = numpy.delete(self.closed, index2, axis=1)
                            self.open = numpy.c_[self.open, para]
                        continue
    
                    self.open = numpy.c_[self.open, para]  # 参数添加到open中
                    print(self.open)
    
        def judge_location(self, m, list_co):
            """
            判断拓展点是否在open表或者closed表中
            :return:返回判断是否存在,和如果存在,那么存在的位置索引
            """
            jud = 0
            index = 0
            for i in range(list_co.shape[1]):
    
                if m[0] == list_co[0, i] and m[1] == list_co[1, i]:
    
                    jud = jud + 1
    
                    index = i
                    break
                else:
                    jud = jud
            # if a != 0:
            #     continue
            return jud, index
    
        def direction(self, father_point, son_point):
            """
            建立每一个节点的方向,便于在closed表中选出最佳路径
            非常重要的一步,不然画出的图像参考1.1版本
            x记录子节点和父节点的x轴变化
            y记录子节点和父节点的y轴变化
            如(0,1)表示子节点在父节点的方向上变化0和1
            :return:
            """
            x = son_point[0] - father_point[0]
            y = son_point[1] - father_point[1]
            return x, y
    
        def path_backtrace(self):
            """
            回溯closed表中的最短路径
            :return:
            """
            best_path = [15, 15]  # 回溯路径的初始化
            self.best_path_array = numpy.array([[15], [15]])
            j = 0
            while j <= self.closed.shape[1]:
                for i in range(self.closed.shape[1]):
                    if best_path[0] == self.closed[0][i] and best_path[1] == self.closed[1][i]:
                        x = self.closed[0][i]-self.closed[2][i]
                        y = self.closed[1][i]-self.closed[3][i]
                        best_path = [x, y]
                        self.best_path_array = numpy.c_[self.best_path_array, best_path]
                        break  # 如果已经找到,退出本轮循环,减少耗时
                    else:
                        continue
                j = j+1
            # return best_path_array
    
        def main(self):
            """
            main函数
            :return:
            """
            best = self.start  # 起点放入当前点,作为父节点
            h0 = self.h_value_tem(best)
            init_open = [best[0], best[1], 0, 0, 0, h0]  # 将方向初始化为(0,0),g_init=0,f值初始化h0
            self.open = numpy.column_stack((self.open, init_open))  # 起点放入open,open初始化
    
            ite = 1  # 设置迭代次数小于200,防止程序出错无限循环
            while ite <= 1000:
    
                    # open列表为空,退出
                    if self.open.shape[1] == 0:
                        print('没有搜索到路径!')
                        return
    
                    self.open = self.open.T[numpy.lexsort(self.open)].T  # open表中最后一行排序(联合排序)
    
                    # 选取open表中最小f值的节点作为best,放入closed表
    
                    best = self.open[:, 0]
                    print('检验第%s次当前点坐标*******************' % ite)
                    print(best)
                    self.closed = numpy.c_[self.closed, best]
    
                    if best[0] == 15 and best[1] == 15:  # 如果best是目标点,退出
                        print('搜索成功!')
                        return
    
                    self.child_point(best)  # 生成子节点并判断数目
                    print(self.open)
                    self.open = numpy.delete(self.open, 0, axis=1)  # 删除open中最优点
    
                    # print(self.open)
    
                    ite = ite+1
    
    
    class MAP(object):
        """
        画出地图
        """
        def draw_init_map(self):
            """
            画出起点终点图
            :return:
            """
            plt.imshow(map_grid, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)
            # plt.colorbar()
            xlim(-1, 20)  # 设置x轴范围
            ylim(-1, 20)  # 设置y轴范围
            my_x_ticks = numpy.arange(0, 20, 1)
            my_y_ticks = numpy.arange(0, 20, 1)
            plt.xticks(my_x_ticks)
            plt.yticks(my_y_ticks)
            plt.grid(True)
            # plt.show()
    
        def draw_path_open(self, a):
            """
            画出open表中的坐标点图
            :return:
            """
            map_open = copy.deepcopy(map_grid)
            for i in range(a.closed.shape[1]):
                x = a.closed[:, i]
    
                map_open[int(x[0]), int(x[1])] = 1
    
            plt.imshow(map_open, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)
            # plt.colorbar()
            xlim(-1, 20)  # 设置x轴范围
            ylim(-1, 20)  # 设置y轴范围
            my_x_ticks = numpy.arange(0, 20, 1)
            my_y_ticks = numpy.arange(0, 20, 1)
            plt.xticks(my_x_ticks)
            plt.yticks(my_y_ticks)
            plt.grid(True)
            # plt.show()
    
        def draw_path_closed(self, a):
            """
            画出closed表中的坐标点图
            :return:
            """
            print('打印closed长度:')
            print(a.closed.shape[1])
            map_closed = copy.deepcopy(map_grid)
            for i in range(a.closed.shape[1]):
                x = a.closed[:, i]
    
                map_closed[int(x[0]), int(x[1])] = 5
    
            plt.imshow(map_closed, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)
            # plt.colorbar()
            xlim(-1, 20)  # 设置x轴范围
            ylim(-1, 20)  # 设置y轴范围
            my_x_ticks = numpy.arange(0, 20, 1)
            my_y_ticks = numpy.arange(0, 20, 1)
            plt.xticks(my_x_ticks)
            plt.yticks(my_y_ticks)
            plt.grid(True)
            # plt.show()
    
        def draw_direction_point(self, a):
            """
            从终点开始,根据记录的方向信息,画出搜索的路径图
            :return:
            """
            print('打印direction长度:')
            print(a.best_path_array.shape[1])
            map_direction = copy.deepcopy(map_grid)
            for i in range(a.best_path_array.shape[1]):
                x = a.best_path_array[:, i]
    
                map_direction[int(x[0]), int(x[1])] = 6
    
            plt.imshow(map_direction, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)
            # plt.colorbar()
            xlim(-1, 20)  # 设置x轴范围
            ylim(-1, 20)  # 设置y轴范围
            my_x_ticks = numpy.arange(0, 20, 1)
            my_y_ticks = numpy.arange(0, 20, 1)
            plt.xticks(my_x_ticks)
            plt.yticks(my_y_ticks)
            plt.grid(True)
    
        def draw_three_axes(self, a):
            """
            将三张图画在一个figure中
            :return:
            """
            plt.figure()
            ax1 = plt.subplot(221)
    
            ax2 = plt.subplot(222)
            ax3 = plt.subplot(223)
            ax4 = plt.subplot(224)
            plt.sca(ax1)
            self.draw_init_map()
            plt.sca(ax2)
            self.draw_path_open(a)
            plt.sca(ax3)
            self.draw_path_closed(a)
            plt.sca(ax4)
            self.draw_direction_point(a)
    
            plt.show()
    
    
    if __name__ == '__main__':
    
        a1 = AStar()
        a1.main()
        a1.path_backtrace()
        m1 = MAP()
        m1.draw_three_axes(a1)
    A*算法基于栅格地图的全局路径规划

  • 相关阅读:
    jmeter-测试webservice接口
    Python
    Mysql:PDBC(Python操作数据库-mysql)
    Mysql: JDBC(Java 操作数据库-mysql)
    Mysql:事务、索引(了解)
    Mysql:DQL(Data Query Language
    Mysql:DML(Data Manipulation Language- 数据操作语言)
    Mysql:列类型,表类型,常用字段属性
    Mysql:DDL(Data Definition Language-数据定义语言)
    Mysql:Centos7安装Mysql5.6
  • 原文地址:https://www.cnblogs.com/clemente/p/9543165.html
Copyright © 2020-2023  润新知