Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get
and put
.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.put(key, value)
- Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ ); cache.put(1, 1); cache.put(2, 2); cache.get(1); // returns 1 cache.put(3, 3); // evicts key 2 cache.get(2); // returns -1 (not found) cache.put(4, 4); // evicts key 1 cache.get(1); // returns -1 (not found) cache.get(3); // returns 3 cache.get(4); // returns 4
什么是LRU?
LRU(least recently used)最近最少使用。
假设 序列为 4 3 4 2 3 1 4 2
物理块有3个 则
首轮 4调入内存 4
次轮 3调入内存 3 4
之后 4调入内存 4 3
之后 2调入内存 2 4 3
之后 3调入内存 3 2 4
之后 1调入内存 1 3 2(因为最少使用的是4,所以丢弃4)
之后 4调入内存 4 1 3(原理同上)
最后 2调入内存 2 4 1
import java.util.HashMap; public class LRUCache { private HashMap<Integer, DoubleLinkedListNode> map = new HashMap<Integer, DoubleLinkedListNode>(); private DoubleLinkedListNode head; private DoubleLinkedListNode end; private int capacity; private int len; public LRUCache(int capacity) { this.capacity = capacity; len = 0; } public int get(int key) { if (map.containsKey(key)) { DoubleLinkedListNode latest = map.get(key); removeNode(latest); setHead(latest); return latest.val; } else { return -1; } } public void removeNode(DoubleLinkedListNode node) { DoubleLinkedListNode cur = node; DoubleLinkedListNode pre = cur.pre; DoubleLinkedListNode post = cur.next; if (pre != null) { pre.next = post; } else { head = post; } if (post != null) { post.pre = pre; } else { end = pre; } } public void setHead(DoubleLinkedListNode node) { node.next = head; node.pre = null; if (head != null) { head.pre = node; } head = node; if (end == null) { end = node; } } public void put(int key, int value) { if (map.containsKey(key)) { DoubleLinkedListNode oldNode = map.get(key); oldNode.val = value; removeNode(oldNode); setHead(oldNode); } else { DoubleLinkedListNode newNode = new DoubleLinkedListNode(key, value); if (len < capacity) { setHead(newNode); map.put(key, newNode); len++; } else { map.remove(end.key); end = end.pre; if (end != null) { end.next = null; } setHead(newNode); map.put(key, newNode); } } } } class DoubleLinkedListNode { public int val; public int key; public DoubleLinkedListNode pre; public DoubleLinkedListNode next; public DoubleLinkedListNode(int key, int value) { val = value; this.key = key; } }