• HDU 1695 GCD(容斥定理)


    GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 7529    Accepted Submission(s): 2773


    Problem Description
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     

    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     

    Output
    For each test case, print the number of choices. Use the format in the example.
     

    Sample Input
    2 1 3 1 5 1 1 11014 1 14409 9
     

    Sample Output
    Case 1: 9 Case 2: 736427
    Hint
    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
     

    Source




        题意:输入五个整数a,b,c,d,k。要求从区间[a,b]取出一个x,从区间[c,d]取出一个y,使得GCD(x,y) == k求出有多少种情况,只是注意的是GCD(5,7)与GCD(7,5)是一种。


        思路:将x,y同一时候除以k。就转变成求x,y互质,就能用容斥定理做了。





    #include<iostream>
    #include<algorithm>
    #include<stdio.h>
    #include<string.h>
    #include<stdlib.h>
    #include<math.h>
    #include<vector>
    #include<queue>
    #include<stack>
    #include<map>
    
    #define N 101000
    
    using namespace std;
    
    vector<int>q[N];
    int num[N];
    int a,b,c,d,k;
    
    void init(){
        for(int i=0;i<=N;i++){
            q[i].clear();
        }
        for(int i=1;i<=100000;i++){
            int p = i;
            int pi = sqrt(p);
            for(int j=2;j<=pi;j++){
                if(p%j == 0){
                    q[i].push_back(j);
                    while(p%j == 0){
                        p = p/j;
                    }
                }
            }
            if(p!=1){
                q[i].push_back(p);
            }
        }
    }
    
    __int64 IEP(int ii,int pn){
        int pt = 0;
        __int64 s = 0;
        num[pt++] = -1;
        for(int i=0;i<q[ii].size();i++){
            int l = pt;
            for(int j=0;j<l;j++){
                num[pt++] = num[j]*q[ii][i]*(-1);
            }
        }
        for(int i=1;i<pt;i++){
            s += pn/num[i];
        }
        return s;
    }
    
    int main(){
        int T;
        init();
        int kk = 0;
        scanf("%d",&T);
        while(T--){
            scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
            if(b>d){
                int e = b;
                b = d;
                d = e;
            }
            if(k == 0){
                printf("Case %d: 0
    ",++kk);
                continue;
            }
            b = b/k;
            c = b+1;
            d = d/k;
            __int64 sum = 0;
            for(int i=1;i<=b;i++){
                sum += b - IEP(i,b);
            }
            sum = (sum+1)/2;
            for(int i=1;i<=b;i++){
                sum += d - c + 1 - IEP(i,d) + IEP(i,c-1);
            }
            printf("Case %d: %I64d
    ",++kk,sum);
        }
        return 0;
    }


     
  • 相关阅读:
    CentOS 7中firewall防火墙详解和配置以及切换为iptables防火墙
    使用kubeadm安装Kubernetes v1.10
    Docker版本变化和新版安装
    Kubernetes实践--hello world 示例
    kubernetes常用命令
    区块链入门教程
    Json概述以及python对json的相关操作
    linux activiti5.22 流程图乱码
    Spring Cloud Gateway 实现Token校验
    oauth table
  • 原文地址:https://www.cnblogs.com/claireyuancy/p/7338350.html
Copyright © 2020-2023  润新知