• 数据预处理之归一化


    
         归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。归一化是为了加快训练网络的收敛性,可以不进行归一化处理
         归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。归一化有同一、统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,归一化是同一在0-1之间的统计概率布;SVM是以降维后线性划分距离来分类和仿真的,因此时空降维归一化是统一在-1--+1之间的统计坐标分布。当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习速度很慢。为了避免出现这种情况,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于0或与其均方差相比很小。
          归一化是因为sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。所以这样做分类的问题时用[0.9 0.1 0.1]就要比用要好。
    但是归一化处理并不总是合适的,根据输出值的分布情况,标准化等其它统计变换方法有时可能更好。

    主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。 归一化方法(Normalization Method)
    1。把数变为(0,1)之间的小数 主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。
    2 。把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。
    比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。
    标准化方法(Normalization Method)
            数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。由于信用指标体系的各个指标度量单位是不同的,为了能够将指标参与评价计算,需要对指标进行规范化处理,通过函数变换将其数值映射到某个数值区间。

    关于神经网络(matlab)归一化的整理:
    由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:
    1、线性函数转换,表达式如下:
    y=(x-MinValue)/(MaxValue-MinValue)
    说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。
    2、对数函数转换,表达式如下:
    y=log10(x)
    说明:以10为底的对数函数转换。
    3、反余切函数转换,表达式如下:
    y=atan(x)*2/PI
    归一化是为了加快训练网络的收敛性,可以不进行归一化处理
    归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。归一化有同一、统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,归一化是同一在0-1之间的统计概率分布;
    当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习速度很慢。为了避免出现这种情况,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于0或与其均方差相比很小。
    归一化是因为sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。所以这样做分类的问题时用[0.9 0.1 0.1]就要比用[1 0 0]要好。
    但是归一化处理并不总是合适的,根据输出值的分布情况,标准化等其它统计变换方法有时可能更好。


    以上资料整理自网络



  • 相关阅读:
    什么是面向对象(OOP)
    Java虚拟机(JVM)你只要看这一篇就够了!
    ES6中新增的Object.assign()方法详解
    微信小程序_专题_脚本之家(小程序全部知识点)
    微信小程序 生命周期详解
    vue 阻止事件冒泡,捕获方法
    Java必备常见单词
    JS夸页面通信极简方案&纯前端实现文件下载
    vue keep-alive以及activated,deactivated生命周期的用法
    JVM实用参数 内存调优
  • 原文地址:https://www.cnblogs.com/cl1024cl/p/6205061.html
Copyright © 2020-2023  润新知