传送门:https://www.luogu.org/problemnew/show/P2512
题意:
有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。问使得每个人手中糖果个数相同的最小代价。
思路:
如果不是环。这道题要考虑前 i 个人 和前(i+1)个人的转移,前i个人必须从第i+1个人中拿到sum(1~i) - i * ave的个数。所以总费用就是n个前缀和相加(这里的前缀和已经减去平均值)。因为是环,可以发现以第K个人开始记录的前缀和可以从原来的前缀和推过来。
假定我们切开后的顺序是A[k+1],A[k+2],...,A[M],A[1],...,A[k]A[k+1],A[k+2],...,A[M],A[1],...,A[k],那么其前缀和也会有所变化,即S[k+1]−S[k],S[k+2]−S[k],...,S[M]−S[k],.S[1]+S[M]−S[k],...,S[M]S[k+1]−S[k],S[k+2]−S[k],...,S[M]−S[k],.S[1]+S[M]−S[k],...,S[M]。
又因为S【M】等于0。所以就是求sum(S【i】 - S【k】)的最小值,可以发现这个k为中位数时,取到最小值。
//#pragma GCC optimize(3) //#pragma comment(linker, "/STACK:102400000,102400000") //c++ // #pragma GCC diagnostic error "-std=c++11" // #pragma comment(linker, "/stack:200000000") // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") // #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3) #include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << " "; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl ' ' #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) #define max3(a,b,c) max(max(a,b), c); #define min3(a,b,c) min(min(a,b), c); //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 1e9+7; const double esp = 1e-8; const double PI=acos(-1.0); const double PHI=0.61803399; //黄金分割点 const double tPHI=0.38196601; template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } /*-----------------------showtime----------------------*/ const int maxn = 1e6+9; ll a[maxn]; ll pre[maxn]; int main(){ int n;ll sum = 0; scanf("%d", &n); for(int i=1; i<=n; i++){ scanf("%lld", &a[i]); sum += a[i]; } sum = sum / n; ll ans = 0; for(int i=1; i<=n; i++){ a[i] -= sum; pre[i] = pre[i-1] + a[i]; } int m = (n+1)/2; nth_element(pre+1,pre+m,pre+1+n); ll tp = pre[m]; for(int i = 1; i<=n; i++){ ans += abs(pre[i] - tp); } printf("%lld ", ans); return 0; }