• Luogu-P2512 [HAOI2008]糖果传递 贪心


    传送门:https://www.luogu.org/problemnew/show/P2512

    题意:

      有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。问使得每个人手中糖果个数相同的最小代价。

    思路:

      如果不是环。这道题要考虑前 i 个人 和前(i+1)个人的转移,前i个人必须从第i+1个人中拿到sum(1~i) - i * ave的个数。所以总费用就是n个前缀和相加(这里的前缀和已经减去平均值)。因为是环,可以发现以第K个人开始记录的前缀和可以从原来的前缀和推过来。

    假定我们切开后的顺序是A[k+1],A[k+2],...,A[M],A[1],...,A[k]A[k+1],A[k+2],...,A[M],A[1],...,A[k],那么其前缀和也会有所变化,即S[k+1]−S[k],S[k+2]−S[k],...,S[M]−S[k],.S[1]+S[M]−S[k],...,S[M]S[k+1]S[k],S[k+2]S[k],...,S[M]S[k],.S[1]+S[M]S[k],...,S[M]。

    又因为S【M】等于0。所以就是求sum(S【i】 - S【k】)的最小值,可以发现这个k为中位数时,取到最小值。

      

    //#pragma GCC optimize(3)
    //#pragma comment(linker, "/STACK:102400000,102400000")  //c++
    // #pragma GCC diagnostic error "-std=c++11"
    // #pragma comment(linker, "/stack:200000000")
    // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    // #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3)
    
    #include <algorithm>
    #include  <iterator>
    #include  <iostream>
    #include   <cstring>
    #include   <cstdlib>
    #include   <iomanip>
    #include    <bitset>
    #include    <cctype>
    #include    <cstdio>
    #include    <string>
    #include    <vector>
    #include     <stack>
    #include     <cmath>
    #include     <queue>
    #include      <list>
    #include       <map>
    #include       <set>
    #include   <cassert>
    
    using namespace std;
    #define lson (l , mid , rt << 1)
    #define rson (mid + 1 , r , rt << 1 | 1)
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define pb push_back
    #define pq priority_queue
    
    
    
    typedef long long ll;
    typedef unsigned long long ull;
    //typedef __int128 bll;
    typedef pair<ll ,ll > pll;
    typedef pair<int ,int > pii;
    typedef pair<int,pii> p3;
    
    //priority_queue<int> q;//这是一个大根堆q
    //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
    #define fi first
    #define se second
    //#define endl '
    '
    
    #define OKC ios::sync_with_stdio(false);cin.tie(0)
    #define FT(A,B,C) for(int A=B;A <= C;++A)  //用来压行
    #define REP(i , j , k)  for(int i = j ; i <  k ; ++i)
    #define max3(a,b,c) max(max(a,b), c);
    #define min3(a,b,c) min(min(a,b), c);
    //priority_queue<int ,vector<int>, greater<int> >que;
    
    const ll mos = 0x7FFFFFFF;  //2147483647
    const ll nmos = 0x80000000;  //-2147483648
    const int inf = 0x3f3f3f3f;
    const ll inff = 0x3f3f3f3f3f3f3f3f; //18
    const int mod = 1e9+7;
    const double esp = 1e-8;
    const double PI=acos(-1.0);
    const double PHI=0.61803399;    //黄金分割点
    const double tPHI=0.38196601;
    
    
    template<typename T>
    inline T read(T&x){
        x=0;int f=0;char ch=getchar();
        while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
        while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
        return x=f?-x:x;
    }
    
    
    /*-----------------------showtime----------------------*/
            const int maxn = 1e6+9;
            ll a[maxn];
            ll pre[maxn];
    int main(){
            int n;ll sum = 0;  scanf("%d", &n);
            for(int i=1; i<=n; i++){
                scanf("%lld", &a[i]);
                sum += a[i];
            }
            sum = sum / n;
            ll ans = 0;
            for(int i=1; i<=n; i++){
                a[i] -= sum;
                pre[i] = pre[i-1] + a[i];
            }
    
            int m = (n+1)/2;
            nth_element(pre+1,pre+m,pre+1+n);
    
            ll tp = pre[m];
            for(int i = 1; i<=n; i++){
                ans += abs(pre[i] - tp); 
            }
            printf("%lld
    ", ans);
            return 0;
    
    }
    View Code
  • 相关阅读:
    软件体系架构阅读笔记(六)
    软件体系架构阅读笔记(五)
    软件体系架构阅读笔记(四)
    软件体系架构阅读笔记(三)
    软件体系架构阅读笔记(二)
    软件体系架构阅读笔记(一)
    问题账户需求分析
    2018年春季个人阅读计划
    阅读《我们怎样做软件需求分析》有感
    1.5:设计模式
  • 原文地址:https://www.cnblogs.com/ckxkexing/p/9817977.html
Copyright © 2020-2023  润新知