• CodeForces


    632E:http://codeforces.com/problemset/problem/632/E

    参考:https://blog.csdn.net/qq_21057881/article/details/51023067

    题意:

        给定n个值,让你选择k个数,可以重复选择,问可以得到哪些数字。

    思路:

        显然最小的值起到很大的作用,我们可以把每个值都减去这个最小值,利用完全背包,建立dp【i】表示,取到 i 这么多值最少需要多少个数。如果取到 i值需要的数值小于等于K,那么k * 最小值 + i 就是我们能取到的一个值,因为一定需要 k*最小值 (注意我们一开始让每个数都剪去了最小值,要加回来)。

    #include <algorithm>
    #include  <iterator>
    #include  <iostream>
    #include   <cstring>
    #include   <cstdlib>
    #include   <iomanip>
    #include    <bitset>
    #include    <cctype>
    #include    <cstdio>
    #include    <string>
    #include    <vector>
    #include     <stack>
    #include     <cmath>
    #include     <queue>
    #include      <list>
    #include       <map>
    #include       <set>
    #include   <cassert>
    
    using namespace std;
    //#pragma GCC optimize(3)
    //#pragma comment(linker, "/STACK:102400000,102400000")  //c++
    // #pragma GCC diagnostic error "-std=c++11"
    // #pragma comment(linker, "/stack:200000000")
    // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    // #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3)
    
    #define lson (l , mid , rt << 1)
    #define rson (mid + 1 , r , rt << 1 | 1)
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define pb push_back
    #define pq priority_queue
    
    
    
    typedef long long ll;
    typedef unsigned long long ull;
    
    typedef pair<ll ,ll > pll;
    typedef pair<int ,int > pii;
    typedef pair<int,pii> p3;
    
    //priority_queue<int> q;//这是一个大根堆q
    //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
    #define fi first
    #define se second
    //#define endl '
    '
    
    #define OKC ios::sync_with_stdio(false);cin.tie(0)
    #define FT(A,B,C) for(int A=B;A <= C;++A)  //用来压行
    #define REP(i , j , k)  for(int i = j ; i <  k ; ++i)
    #define max3(a,b,c) max(max(a,b), c);
    //priority_queue<int ,vector<int>, greater<int> >que;
    
    const ll mos = 0x7FFFFFFF;  //2147483647
    const ll nmos = 0x80000000;  //-2147483648
    const int inf = 0x3f3f3f3f;
    const ll inff = 0x3f3f3f3f3f3f3f3f; //18
    // const int mod = 10007;
    const double esp = 1e-8;
    const double PI=acos(-1.0);
    const double PHI=0.61803399;    //黄金分割点
    const double tPHI=0.38196601;
    
    
    template<typename T>
    inline T read(T&x){
        x=0;int f=0;char ch=getchar();
        while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
        while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
        return x=f?-x:x;
    }
    
    
    /*-----------------------showtime----------------------*/
    
                const int maxn = 1009;
                int a[maxn],dp[maxn*maxn];
    int main(){
                int n,k;
                scanf("%d%d", &n, &k);
                for(int i=1; i<=n; i++)scanf("%d", &a[i]);
                sort(a+1,a+1+n);
    
                n = unique(a+1,a+1+n) - (a+1);
                // debug(n);
                for(int i=2; i<=n; i++) a[i] = a[i] - a[1];
    
                memset(dp,inf,sizeof(dp));
                dp[0] = 0;
                for(int i=2; i<=n; i++){
                    for(int j=a[i]; j<=a[i]*k; j++){
                        dp[j] = min(dp[j] , dp[j-a[i]] + 1);
                    }
                }
                for(int i=0; i<=a[n] * k; i++){
                    if(dp[i] <= k){
                        printf("%d ", a[1] * k + i);
                    }
                }
                printf("
    ");
                return 0;
    }
    CF - 632E
  • 相关阅读:
    Ajax
    Guitar and Music Theory
    leetcode62 不同路径(Medium)
    leetcode49 字母异位词分组(Medium)
    leetcode3 无重复的最长子串(Medium)
    leetcode69 x的平方根(Easy)
    leetcode300 最长上升子序列(Medium)
    leetcode240 搜索二维矩阵II (Medium)
    leetcode34 在排序数组中查找元素的第一个和最后一个位置(Medium)
    leetcode31 下一个排列(Medium)
  • 原文地址:https://www.cnblogs.com/ckxkexing/p/9741214.html
Copyright © 2020-2023  润新知